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Chapter 1

Introduction

Arthur listened for a short while, but being unable to understand the
vast magority of what Ford was saying he began to let his mind wan-
der, trailing his fingers along the edge of an incomprehensible com-
puter bank, he reached out and pressed an invitingly large red button
on a nearby panel. The panel lit up with the words “Please do not

1]

press this button again.”

Pattern recognition is a research field with a large number of application areas and it receives
a lot of scientific interest. It is concerned with the design and the investigation of systems that
automatically detect patterns of predefined classes in their input. The fundamental aim of research
in pattern recognition is the performance of the classifier, measured by the error rate, defined as
the ratio of misclassifications to the total number of patterns seen in an evaluation.

This work is concerned with the more specific case of the general pattern recognition problem,
where the input consists of digital images. In image recognition the main problem is to identify the
objects present in a given image. This task, which seems ridiculously easy to a human perceptor, is
a very difficult one to teach a digital computer. For a computer, a digital image consists of an array
of pixel values, which has no associated meaning in itself. This work focuses on the recognition of
objects in images, where the position of an object is roughly known, although most of the methods
can be applied to determining both content and position. Furthermore, the emphasis is placed on
appearance based pattern recognition, which refers to the paradigm of considering the whole image
as input to the classifier.

Dealing with image object recognition, in almost all cases one is interested in designing classifiers
that tolerate certain transformations of the input patterns, that is, one wants to achieve invariant
recognition of the image content. This is because the transformations do not affect the class
membership of the represented objects (a rotated image of a car is still an image of a car). Invariance
is an important aspect in image object recognition, since images are seldomly normalized, that is,
brought to a canonical form when presented to the classifier. Although this does not present
a difficulty to humans, who have the ability to recognize objects almost independently of their
position and scale, it is a very hard task for an automatic classifier.

Most of the time, the transformations to be tolerated result from exterior transformations of the
depicted objects relative to the imaging system and are known a priori. Such a priori knowledge

15



16 CHAPTER 1. INTRODUCTION

about the classification task is generally called domain knowledge. For example, in the case of
radiographs the position of the object is not invariable, but is subject to rotation and translation.
The transformations of the input space would then be chosen from the group of linear, affine or
projective transformations, representing the exterior object transformation. In other cases, for ex-
ample in recognition of handwritten characters, the transformations of the images are due to other
reasons, like different styles in handwriting and different pens used. The resulting transformations
may then be approximated by the affine group augmented with a line-thickness transformation.

Most classification algorithms are based on the paradigm of supervised learning, where the clas-
sifier is provided a set of labeled training samples from the different classes to be distinguished.
Therefore, one may be interested — especially in cases where no domain knowledge about the trans-
formation invariance is available — in possibilities to deduce the transformations (or at least the

invariance restrictions) from the training set.

There is a variety of approaches known to achieve invariance in image object recognition (see
e.g. [101]). Some of these will be introduced here. However, a strong emphasis is placed on
a method called tangent distance [89], which is an effective means to compensate small (affine)
transformations in distance based classifiers. The following description of the main idea is taken
from [100]:

“The key idea is that, when subject to spatial transformations, images describe manifolds in
a high dimensional space, and an invariant metric should measure the distance between those
manifolds instead of the distance between other properties of (or features extracted from) the
images themselves. Because these manifolds are complex, minimizing the distance between them
is a difficult optimization problem which can, nevertheless, be made tractable by considering the
minimization of the distance between the tangents to the manifolds — the tangent distance (TD) —
instead of that between the manifolds themselves.”

Tangent distance has been used in a variety of classifiers, including neural networks and memory
based techniques like nearest neighbor algorithms (NN) [87]. The experiments carried out for this
work focussed on kernel density (KD) based classifiers, which are also memory based, and obtained
excellent results [51]. A number of solutions have been proposed for efficient implementation of
such algorithms, e.g. usage of hierarchical confidence refinement [88] or models for representing
large subsets of the prototypes [38], therefore efficiency is not the main topic to be considered here.

Besides tangent distance, which is able to account for global transformations in the image like affine
transformations, a method to compensate small local transformations is presented. This method,
which yields a distance measure tolerant with respect to local distortions is called image distortion
model (IDM) and is based on the following considerations. If, due to noise or artifacts irrelevant to
classification, only a few pixels in two images have different values, this introduces possibly large
distance components in the overall distance between the images. This can be compensated by
specifying a region in the matching image for each picture element in which it is allowed to detect
a best matching pixel.

The relationship between tangent distance and the image distortion model is considered in this
work and a possible generalization is presented. Furthermore, the theoretical background of tan-
gent distance is presented in a probabilistic framework. It can be shown that the tangent distance
measure can be inferred from a probabilistic formulation of known intra-class variance. In connec-
tion with tangent distance, certain structures of covariance matrices are found and these can in
turn be related to structures resulting from neighborhood systems in the images.
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Classifiers implementing the above methods were evaluated on databases of different domain,
coming from optical character recognition (OCR) and medical imaging. In the experiments carried
out for this work an excellent error rate of 2.2% was obtained on the original US Postal Service
handwritten digits recognition task. It was achieved using a kernel density based Bayesian classifier
that incorporates tangent distance, virtual data and classifier combination and is the best result
published on this specific recognition task so far.

Image object recognition has a strong connection to image retrieval, where the task is to retrieve
a “matching” image from a (possibly large) database. If the desired similarity measure is based
on the objects that are present in the image, which is the most common case, the connection is
immediately evident. The best match can then be determined after the objects present have been
recognized. The methods presented here may be used for such an indexing, although the described
task seems to be a lot harder.

The work is organized as follows. Chapter 2 provides a short introduction to the basic notions of
statistical pattern recognition and the classifier architectures used for the experiments, then a short
summary of the goals of this work is given in Chapter 3. Chapters 4, 5 and 7 contain the main
part of this thesis. Chapter 4 is concerned with approaches to invariant image object recognition,
focusing on tangent distance, and introducing the image distortion model. The subsequent Chapter
5 presents the probabilistic theory that describes tangent distance and related approaches and
the description of structured covariance matrices in relation to the image distortion model and
Markov random fields. Chapter 6 describes the databases used and the state of the art in the
field. Chapter 7 contains the results of experiments carried out and relates them to the previous
descriptions. After a conclusion and perspective are given in Chapter 8, the appendix contains
further experiments, some notes on implementation and an additional proof.

Parts of this work are accepted for publication in [51, 50, 20, 21] and have played a role in [23]:

e D. Keysers, J. Dahmen, T. Theiner, and H. Ney. Experiments with an Extended Tangent
Distance. In Proceedings 15th International Conference on Pattern Recognition, Barcelona,

Spain, September 2000. Accepted for publication.

e D. Keysers, J. Dahmen, and H. Ney. A Probabilistic View on Tangent Distance. In
22. DAGM Symposium Mustererkennung 2000, Springer, Kiel, Germany, September 2000.
Accepted for publication.

e J. Dahmen, D. Keysers, M. O. Giild, and H. Ney. Invariant Image Object Recognition using
Mixture Densities. In Proceedings 15th International Conference on Pattern Recognition,
Barcelona, Spain, September 2000. Accepted for publication.

e J. Dahmen, D. Keysers, M. Pitz, and H. Ney. Structured Covariance Matrices for Statistical
Image Object Recognition. In 22. DAGM Symposium Mustererkennung 2000, Springer,
Kiel, Germany, September 2000. Accepted for publication.

e J. Dahmen, T. Theiner, D. Keysers, H. Ney, T. Lehmann, and B. Wein. Classification of
Radiographs in the ‘Tmage Retrieval in Medical Applications’ System (IRMA). In Proceedings
of the 6th International RIAO Conference on Content-Based Multimedia Information Access,
Paris, France, pages 551-566, April 2000.
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Chapter 2

Statistical Pattern Recognition

“Yes, by introducing some random element that can be shaped by that
pattern.”
“Like how?”

“Like by pulling Scrabble letters out of a bag blindfolded.”
2]

This chapter introduces the basic concepts of classification used in this work. Of course this chapter
does not aim for a complete coverage of the subject of statistical pattern recognition. An in-depth
introduction can be found for example in [27, 32]. For the basics presented here it is assumed that
the reader has basic knowledge about (statistical) pattern recognition, e.g. from a lecture on the
subject.

Recognition problems can be coarsely divided in problems with well-defined classes and more
complex ones. For this work only the first type is considered, which includes questions like “Which
digit is present in this image?” or “Which of the six defined regions of the human body does this
radiography belong to?” The second type of problem may contain questions as “What can be
seen in this image?” or “Is there a tumor present in this radiography?”, and their rather complex
nature is not subject of this thesis.

The “art” of pattern recognition is sometimes also called machine learning since the designed
system is supposed to learn to automatically classify the given patterns. The subject of this
chapter is termed statistical pattern recognition, because patterns to be classified usually are results
of some sort of measurement and therefore subject to stochastical processes as e.g. noise. This
in turn should be taken into account when the data is modeled, leading therefore to statistical
models. The following sections are based in many parts on [73].

2.1 Pattern Recognition

Consider a number of classes to be distinguished given as k = 1,..., K. From an observed signal
s and the extracted feature vector x € IR” the corresponding class shall be determined. To do
so, a decision function r : R? — {1,..., K} is needed, which is usually based on a discriminant
function g(x, k) by

r: x+— argmax {g(z,k)} (2.1)
ke{l,...,K}

19



20 CHAPTER 2. STATISTICAL PATTERN RECOGNITION

Signal s

|

Feature Analysis

Feature Vector
X0 RP

argmax g(x,k) ' I_De_cision base_d on
k Discriminant Function g(x,k)

Class Index

Figure 2.1: Typical Structure of a Recognition System

Figure 2.1 illustrates the basic structure of a classifier, which includes the feature extraction step
s — x, which is regarded as given here. The discriminant function can be modeled in a wide
variety of ways, including e.g. polynomial functions or artificial neural nets (ANN). The criterion
for the discriminant function usually is

glx, k) — 1 for the “right” class (2.2)

g(z, k) — 0  for the “false” class '
which in general can only be approximated. In the statistical approach one considers the a pri-
ori probability density functions for the classes p(k) and the class conditional probability density
functions p(x|k) for a feature vector given a class. From these the a posteriori probability density
function p(k|z) can be determined using Bayes’ rule

p(z|k)p(k) p(z[k)p(k)

plklo) = =) R plalk)p() -

The a priori density is usually modeled by relative frequencies or in the case of digit recognition it

is often set to p(k) = % To determine the class for a given x the statistical approach uses Bayes’
decision rule:

r(z) = argmax{p(klx)}
k

- o220
k)}

= argmax {p(z,

= argznaX{P( )p(x|k)} (2.4)

that is, g(z, k) = p(k|z) or equivalently (that is, leading to the same decision) g(z, k) = p(k)p(z|k)
or g(z, k) = log[p(k)p(x|k)]. One can show that Bayes’ rule is optimal for known distributions
with respect to the expected error rate (for a proof see e.g. [27, 73]). Note that this implies the
assumption of a cost function assigning cost one to a misclassification and cost zero to a correct
classification.
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Now, since the true distributions are usually unknown, the arising problems include finding suitable
models for p(k) and p(z|k) respectively g(x, k) and finding suitable criteria and algorithms to
determine (respectively estimate) the free parameters in the models during the training phase. In
pattern recognition one is often confronted with (and only this case is considered here) the case of
supervised learning, that is construction of a classification procedure from a set of data for which
the true classes are known. That means one is given a set of pairs (x,,k,), n =1,..., N where z,,
is a feature vector belonging to class k,, and is asked to determine (learn, estimate) the parameters
for the classifier from this set. Usually, the criterion for the performance of the developed classifier
is the empirical error rate (ER) which is given by the ratio of classification errors made on a test
data set to the number of tests performed.

Maximum Likelihood Estimation

One widely used method to determine parameters from a set of given data is maximum likelihood
estimation. Consider a density function p(z|c, ) that depends on a parameter set Jy, which in
turn depends on the modeled class k. For each class Ny, training vectors xix, ..., Znk, ..., TN,k are
given. The likelihood function is then given by

Ny,
Ok +— [ p@nrlk, Ok) (2.5)
n=1
respectively the log-likelihood function is
Ny,
U — Z log p(znklk, Uk) (2.6)
n=1

Then the mazimum likelihood estimator Uy, is defined by

Ny,
) = argmax Toklk,
K g {H P(Tnkl k)}

n=1
Ny

= arggnax {Z logp(xnk|k,19k)} (2.7)
k n=1

The term discriminative training is used for approaches that take the a posteriori probability as a
criterion for the training phase, for example

N
9 — ] p(knlzn, ) (2.8)
n=1
respectively the logarithm
N
9 — > log p(kn|an, 9) (2.9)
n=1

These methods are discriminative, because they take into account the relation between the classes.

Relation to Distance Based Classifiers

Since distance based classifiers play an important role in this work, the connection to the statistical
point of view is considered here (see also Chapter 5). Consider a Gaussian distribution (also called
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normal distribution)

1 1 T v—1
z|k) = N(x|pr, X)) = ——ex <— T — ¥ (x — ) 2.10
p(zlk) = N'(@|pk, Bi) Tooe P\ 2 (z — )" X (@ — ) (2.10)
where | - | denotes the determinant of a matrix, and consider the discriminant function g(z, k) =

log[p(k)p(x|k)]. If the terms constant in k are dropped, one arrives at
1 _ 1
9(w, k) = =5 (z — )" B (@ = ) — 5 log [Tk| + log p(k) (2.11)
Ignoring the term f% log | Xk | + log p(k) and defining

9(x, k) = —dy(z, p) (2.12)

with the so called Mahalanobis distance
dy(, ) = (& — ) 'S (@ = ) (2.13)
the decision rule finally becomes

r(z) = arg;nin{dk(x, pr)} (2.14)

which is called nearest neighbor (NN) decision rule or nearest prototype / center / mean, respec-
tively minimum distance rule. It can be shown that in the fictitious case of an infinite amount of
training data the error rate for the NN classifier is at most twice the (optimal) Bayes error rate.
The resulting classifier type is a special case of the k-nearest neighbor algorithm! for the choice
k = 1. In k-nearest neighbor classification the classes of the k closest prototypes to the observation
x are considered and the decision of the classifier is based on different voting schemes, where each
of the k prototypes has one vote (of possibly different weight).

If ¥ = oI with identity matrix I is assumed, the Mahalanobis distance becomes a (weighted)
squared Euclidean distance which is a special case of the squared I, norms? for p = 2, where

i, (w,p6) = |lz— e[}

D 2/p
[Z |zq — ukd|p] (2.15)
d=1

For p = 1 this yields the squared city block distance and for p — oo the squared maximum distance.

Training Set Size

For most applications, the size of the training set used has a strong influence on classification
results. It seems obvious that a classifier, in particular one based on statistics, should perform
better with increasing number of training samples. This is especially true for high-dimensional
feature spaces (which is sometimes called the “curse of dimensionality”), which is related to the
“emptiness” of high dimensional space. It is a general problem that only limited data is available
for training. Having access to infinite training data and resources even a trivial algorithm would

11t should bec clear from the context, whether ‘k’ is meant to be the class number or the number of prototypes
in the nearest neighbor classifier.

2In most contexts the norms themselves and not the squared norms are considered, but in the following it is
easier to directly use the squared norms instead. Note that these usually do not meet the distance measure criterion
d(a,b) + d(b,c) > d(a,c) (triangle inequality).
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perform optimally. One approach to alleviate this problem is to use a priori or domain knowledge
for regularization, for example represented by tangent vectors, which will be introduced in detail in
Section 4.2 together with the concept of tangent distance. On this aspect, SIMARD et al. comment
that “using tangent distance or tangent propagation is like having a much larger database” [87].
In compliance with this is the empirical result stated by VAPNIK “As the number of examples
increases [from 7291] to 60,000 the advantage of a priori knowledge decreased.” [97, p. 159]
(referring to the USPS and NIST databases, see Chapter 6).

With respect to the impact of the training set size in optical character recognition, one can find
in [92] the statement “For every tenfold increase in database size the error rate is cut by half or
more though the performance seems to be leveling off slightly for the larger database sizes.” And
furthermore “there is good reason to believe that performance will continue to improve as the
training database grows even larger. In some ways, this is an obvious result. If the database is
large enough it will eventually saturate the space of all possible bitmaps and the system could only
fall short of perfect performance due to errors or noise in the training database.” From this the
authors deduce that “researchers might better spend their time collecting data than writing code.”

Overview of Algorithms

The choice of the model or classifier to use is in general somewhat arbitrary, but an empirical
analysis [93] shows that the accuracy of different algorithms depends on the data characteristics.
For example k-NN performance decreases as the relative number of feature variables to the training
cases increases. One can even show, that for each regularity that a given machine can learn there
exists another regularity for that the machine does the opposite, that is it generalizes worse than
a random classifier. This statement is sometimes referred to as “no free lunch”.

In the following sections two statistical methods will be considered in more detail, namely Gaussian
mixture densities and kernel densities. The statistical pattern recognition approach is one of the
three main approaches besides the empirical based nonlinear approach for discriminant functions
using artificial neural nets and the support vector machine approach based on statistical learning
theory. This distinction between approaches is somewhat arbitrary, since e.g. a support vector
machine can be seen in the context of statistical pattern recognition. Furthermore, it can be
shown, that with respect to the squared error the global optimum of an ANN is reached if the
discriminant function equals the a posteriori probability density function [73]. There also exists
a variety of methods based on rules or decision trees. For an introduction to ANN see e.g. [41].
Interesting extensions of ANNs to achieve invariance with respect to given transformations called
tangent propagation can be found in [87, 91].

A way to formalize learning a classification function from examples is statistical learning theory
[97, 98, 99]. One central point of the analysis of learning algorithms is the so called VC dimension
(Vapnik-Chervonenkis dimension, equal to the maximum number h of vectors from two classes
which can be separated in all 2" possible ways using (discriminant) functions of this set), which
is related to such notions as generalization ability, minimum description length and overfitting
[99]. Onme basic result is that there exists a tradeoff between the quality of approximation and
the complexity of the approximating function. From statistical learning theory the support vector
machine evolved, which uses optimal separating hyperplanes in high-dimensional feature spaces. It
effectively transform patterns into high-dimensional space, constructs a hyperplane for separation
of classes and thus allows algorithmic control of the VC-dimension. One empirical finding is that
only few training examples are effectively used in constructing the hyperplanes, which are called
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support vectors and are characteristic for the data. Classification can then be done by comparison
with the support vectors. SVMs can also be equipped with transformation invariance, central topic
of this work, which leads to so called invariant support vector machines [81].

Support vector machines, methods like k-NN and kernel densities are usually considered memory
based techniques, because (a subset of) the training samples is memorized and compared to the
observation during the classification process. In contrast to this, methods like ANNs are regarded as
learned function techniques, since the training data are here used to determine the free parameters
of a discriminant function. One can argue that this distinction is arbitrary, because the memorized
examples can be considered parameters of a complex function.

As a drawback of memory based methods it is sometimes seen that they are time consuming since
the test pattern has to be compared to all stored references. To this problem a number of solutions
have been proposed, including hierarchies of distances or models for representing large subsets of
prototypes [87, 38, 58]. One can also use methods such as partial distance calculation, hierarchical
structuring of the training vectors or related approaches. Furthermore, as computers grow faster,
this steadily becomes less of a drawback MOORE’s law about exponential growth in computational
resources is supposed to become true for the next couple of generations of computers).

2.2 Gaussian Mixture Densities

One effective method to describe the conditional probability density is to assume that the data
is distributed according to a linear mixture of multivariate Gaussian distributions, thus allowing
multimodal distributions. This assumption does not impose any restriction on the modeling power,
since the resulting Gaussian mizture density (GMD) can still approximate any density function
with arbitrary precision.

First consider a unimodal Gaussian distribution

pzlk) = N(z|pr, Ex)
1 1

@)D [] p< 2

with the according maximum likelihood estimates

(o= )" 5 (- ) (2.16)

1

He = 5 ) Tk (2.17)
kn:l
1

% = N (@nk — o) @k — i) (2.18)
kn:l

(2.19)

Since in the experiments the setting ¥ = O',%,I was used, here the maximum likelihood estimator
for o is given (as one easily verifies by differentiating the log-likelihood)

1

DNy, ot

(Tt — )T (Tt — i) = %trace(zk) (2.20)

o _
op =

This means that the estimator equals the arithmetic mean of the diagonal elements of the empirical
covariance matrix. Now, a Gaussian mixture is a linear combination of Gaussians

Iy I
p({L‘|/€) = chi 'N(&C|Mki,zki), Cki > 0, chi =1 (221)
=1 =1
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with mixture weights cg; and component densities N (x|, Xgi). The maximum likelihood esti-
mators for the parameters cannot be determined explicitly any more, but there exists an iterative
algorithm which can be used for this purpose called EM-algorithm (Expectation-Maximization)
[24, 73, 17, 18]. A classifier using GMD is also called radial basis function classifier (RBF) and
produces the same type of decision rules as a support vector machine with Gaussian kernel [98].
For a short introduction to image object recognition using GMD see [18]. The use of GMD based
classifiers has proven to be effective for image object recognition in various settings [17, 18, 19],
and is a widely used method in speech recognition.

2.3 Kernel Densities

The description of the class conditional probability density function by kernel densities (KD)
(also called parzen windows or parzen densities) can be seen as extreme case of GMD where each
reference serves as a center of its “own” (usually, but not necessarily normal) distribution. That
is, each training sample z,, defines a single density (e.g. Gaussian N (z|z,,%,, ) with covariance
matrix X, ), that is the sample itself is interpreted as mean vector. Although in general ¥, may
depend on the sample x,,, it is usually chosen to be equal for all considered x,,. The method belongs
to the class of so called nonparametric procedures (as for example the nearest neighbor method)
that can be used without assuming that the form of the underlying density is known [27, p. 85].
Since all the training patterns are kept and compared to the observation, this method is also closely
related to the (k-)NN technique. A good informal description in the context of digit recognition
can be found in [43]: “For instance, kernel density estimation [...] is a popular nonparametric
modeling technique. For this, the probability density for a particular digit is the weighted sum
of a collection of kernel functions. The functions all have the same shape, but each is centered
on one of the patterns in that class in the training set. Each kernel function typically integrates
to one and the weights in the sum are usually 1/M, where M is the number of the patterns in
the training set, so the overall kernel density estimate is correctly normalized. Having built ten
such models, one for each digit class, the class to which the a new image belongs is inferred by
evaluating the density under each of the models at the location of the new image, and reporting
the one that is highest. If the kernel functions are radially symmetric, monotonically decreasing,
and have unbounded extent (e.g. a Gaussian), then relative density estimation becomes identical
to nearest neighbor classification as the width parameter of the kernel goes to zero.” Since each
training sample defines its own density center the covariance matrix must be chosen by other
methods than maximum likelihood, because ML estimation leads to zero variances in this case. To
this problem FUKUNAGA writes “The neighborhoods should take the same ellipsoidal shape as the
underlying distribution.” [32, p. 267]

Starting with a kernel function ¢y (z) that is itself a probability density function usually centered
around zero (possibly depending on the class k) the kernel density approximation of the class
conditional probability density function is

L
plelk) = 5 > on@ — k) (2.22)

and using a Gaussian kernel this becomes

L

p(;E“C) = EZN(‘T;|I”]€7E$M‘:)

n=1
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1 1
Z 2ﬂ- D‘ZI k €xp <2 (JC - 'Tnk) Exnk ( xnk)) (2.23)
Inserting this into Bayes’ rule together with the ML-estimation p(k) = % yields the decision rule

r(z) = argmaX{p(k)p(xlk)}

= argmax { ]]\(7 N Z ﬁw s ( L S(@—a) 25 (2 - ﬂfnk))}
= argmax{ T Z exp < e, (2 ))} (2.24)

where d, , (x) represents the Mahalanobis distance of = to x,j;. Now the KD based classifier can be

used with different other distance measures. For example the squared Euclidean distance could be
used or distance measures that are invariant with respect to some transformation as e.g. tangent
distance which will be introduced in Chapter 4. Consider for example the setting of ¥ = O’,%I ,

Tnk

which was used in the experiments with Euclidean distance. Then the decision rule becomes

r(z) = argmax{ 5 Z exp ( 507 ||z — xnk|2>} (2.25)

To compensate for the fact that variances are usually underestimated using the limited amount of
training data, one can multiply the variances o by a constant factor greater than one.

Because of the exponential decay with increasing distance only the reference patterns closest to the
test pattern result in a significant contribution to the sum. The experiments with digit recognition
showed that using more than the ten closest matches does usually not change classification results.
Note that this can be interpreted as a probabilistic justification for the use of k-NN based classifiers.
For these it is generally sufficient to compute the distance for the 100 closest references, which
can be efficiently determined using Euclidean distance, thus justifying the hierarchical filtering
approach presented in [88].

To avoid numerical instabilities with exponentiation when implementing the kernel density based
classifier one may choose the following method. First, all distances needed are calculated and the
minimum distance dp,;, is determined. Then the probabilities may be calculated by

plalk) = exp ( — 2 dumin Z (e, (@) i) (2.26)
(~30m) e e (4 )

where the leading factor may be dropped for classification purposes, since it does not depend on
the class. This method assures that the exponential terms in the sum stay in ranges that are
numerically more stable (at least the term with minimum distance has the value one).

2.4 Feature Reduction

A typical problem for statistical Bayesian classifiers based on Gaussian mixture densities or kernel
densities is the estimation of covariance matrices. In case of the USPS task (see Chapter 6), with
feature vectors = € IR*®, a single covariance matrix requires (due to symmetry) the estimation
of 256 - (256 + 1)/2 = 32.896 parameters. Given only 7.291 training samples, this is infeasible. A
common approach to overcome this difficulty is the use of variance pooling
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e class specific variance pooling :
estimate only a single ¥j for each class k, i.e. Xp; =X, Vi=1,... I}

e global variance pooling :
estimate only a single >, ie. Y, =X VEk=1,... KandVi=1,..., I

in combination with diagonal covariance matrices, i.e. variance vectors.

Another way to overcome the difficulties with the estimation of covariance matrices is the use of
feature reduction. Employing feature reduction the aim is to capture the essential information of
the high dimensional feature vector in a smaller number of features, usually by means of a linear
transformation of the feature space, but nonlinear methods are also used [40]. In the following
sections two methods frequently used are presented.

Karhunen-Loéve Transformation, Principal Components Analysis

The Karhunen-Loéve Transformation (KLT) or Principal Components Analysis (PCA) is a lin-
ear transformation aimed at minimizing the representation error. After calculating the (empiri-
cal) covariance matrix X, it is diagonalized using an eigenvector decomposition with eigenvectors
v1,...,vp and corresponding eigenvalues Aq, ..., Ap sorted in decreasing order, i.e. A\g > A\g+1,d =
1,..., D —1. This decomposition can be achieved e.g. using a singular value decomposition (SVD)
[79]. Then ¥ can be written as

D
Y = Z)\ZUZ’UZT
i=1
A1 0
f— [fUl...UD] ',. [Ul"'UDT
0 AD
1 1
M 0\’ M 0\’
= [Ul"'UD] ['Ul"'UD]
0 AD 0 AD
T
= i (2%) (2.27)

where the last steps are given in order to help the considerations of Section 5.1.2, where PIRERT used,
being the inverse of R (Z_% is also the transformation matrix of the whitening transformation.
After application of the whitening transformation the covariance matrix in the transformed space
is equal to the identity matrix and the distribution is called ‘white’ (compare [32, pp. 26ff]).) The
eigenvectors vy, ..., v (for some d fixed or to determine) corresponding to the largest eigenvalues
are also referred to as principal components. Now the KLT or PCA consist in representing each
vector by its projection onto the principal components, which is a linear transformation x €
R” — 7 € IR with the matrix representation of the transformation being [v; - - - vq], which has
the property that the expected error E{||z — #||?} is minimal for all linear transformations to d
dimensions. Note that PCA discards the directions of small variance. One now hopes that the
transformation captures the most relevant part of the information contained in the vectors x. This
point of view of information based on magnitude of variance and minimal reconstruction error may
not be suitable for classification purposes, since it does not take into account the class information
and there are various examples for this fact [82, p. 116].
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Linear Discriminant Analysis

The linear discriminant analysis (LDA), also called Fisher’s LDA takes into account the class
information in feature reduction [27, pp. 118ff]. It tries to simultaneously maximize the distances
between the class centers i and to keep the distances within one class constant. This can be
achieved using within-class and between-class scatter matrices, leading to a generalized eigenvalue
problem. Another method leading to the same result is to employ a whitening transformation
and then (using the fact that the within-class scatter matrix is the identity matrix then) use the
subspace spanned by the vectors pg — pu where p is the total mean vector. This subspace method
is numerically more robust in some cases [17]. The dimension of the obtained subspace is at most
K — 1, which might be too small for some applications. A method to circumvent this problem is to
create so called ‘pseudoclasses’ using for example the EM-algorithm and then use LDA within the
new problem with K’ > K classes yielding at most a K’ — 1-dimensional feature space. The LDA
has the advantage over the PCA that it takes into account the available class information and aims
at maximizing the separability of the classes, which is usually wanted in pattern recognition.

2.5 Holographic Classifiers

In this section a classification algorithm is presented which is algorithmically based on artificial
neural nets, but deriving its motivation from the phenomenon of optical holography [33], therefore
called holographic classifier. The method to be described here implements an associative memory
and is therefore also called holographic associative memory. The approach was introduced by KHAN
and presented in [55, 52, 56, 53, 54], especially in the context of content based image retrieval. A
discussion of the method can be found in [48].

At first sight the connection between associative memory® and pattern recognition might not be
apparent, but any associative memory relies inherently on a specific distance measure that deter-
mines the closeness of an input pattern to the samples presented during training and therefore the
resulting output. An associative memory — also called content addressable memory — is equipped
with a learning algorithm which transforms a set of given stimulus-response pairs into a certain
joint representation and a decoding algorithm which determines the response to a given query
stimulus according to the inherent distance measure on the stimuli. If the training data for a
classification problem now is considered as a set of pairs of stimuli (feature vectors) and responses
(class labels), an associative memory performs a classification task. It remains to say that there
might be different targets for the two viewpoints. In pattern recognition the aim is to reduce
the classification error rate, while for an associative memory this may not be the most important
aspect.

Holography has been used in hardware realization (see e.g. [80]) as a memory medium and is
subject of current research, because it allows high density distributed information storage. The
physical model of holography can be described mathematically in various ways (which will not be
considered here), leading to a possible description of a discrete hologram. This in turn can be
used to model the process of holography in software. In the holographic paradigm the associative
memory is bimodal and is represented as a complex hologram — that is a complex matrix — which
allows modulation of assertion / attention / confidence using the amplitude of the complex domain.
Based on the physical model one can derive the description of calculations necessary to simulate

3The topic of associative memories has been addressed by KOHONEN [60, 61, 62].
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holography in software. For that it is necessary to transform the feature vectors to a complex
representation. (KHAN suggests the use of multidimensional complex numbers but leaves open the
way to handle those.) The desired function should map the assertive value onto the magnitude
and the feature value onto the phase, such that each feature vector is transformed to a vector of
complex numbers. This is done for stimulus and response, that is feature vector and class label in
this context. Great care must be taken in choosing the mapping function, since its characteristics
together with the data characteristics determine the performance of the algorithm. This data
dependency and lack of rules for the choice may be seen as a severe drawback of the method.
The desired goal in the mapping of features is to reach a high symmetry in the transformed data,
meaning that on the average the sum of all complex representations should be close to zero.

For each training vector x,, and corresponding class k,, let 2/, and k!, denote the complex represen-
tations. The representation used for holographic classification may in general have a dimensionality
different from the original vectors, since a minimum dimensionality is desired. This is due to effects
in the hologram that occur, when the load, defined as the number of stored patterns divided by
the feature vector length, exceeds a certain threshold. If the holographic paradigm is used for clas-
sification purposes, it seems reasonable, that this load threshold can be higher than for associative
memory, since it is not desired to distinguish elements belonging to one class. A higher dimen-
sionality can be achieved by using outer products for the feature vectors or binary representation
for the class labels. After transfer to the complex domain for each training vector the correlation
matrix

h =, K, (2.28)
is defined, where the bar denotes the complex conjugate. Adding up these yields the hologram

N N
h=> h,=> o -k, (2.29)
n=1 n=1

The hologram itself is usually modified in training using discriminative training procedures similar
to backpropagation for artificial neural networks.

For holographic reproduction (which is the first step of classification if the method is used for
that aim) the observation z is transformed to the according complex representation 2’ and then
multiplied with the hologram, yielding the complex representation of the answer

1
K==-2'-h (2.30)

c
with ¢ being a normalization factor equal to the sum of magnitudes of the elements of the complex
representation z’ (of dimension .J). The magnitude of k' now is an indicator for the confidence in
the given answer. For use in classification a second step needs to be performed, which is finding
the class number k best matching the complex representation k', using the inverse of the mapping

function used to transform the class labels to the complex domain.

The classification procedure inherently relies on a specific distance measure for similarity, which
can be written as (without proof given here)

J
1
1—d(',u) = - Z || |p] (cos(phase(x’;) — phase(u;)) + i sin(phase(z;) — phase(y}))) (2.31)
P

For a “unary” representation of the class label, with

1 i=k
K= L i=1,... K 2.32
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the discriminant function can then be explicitly given as

K

Ng Ny
gla, k)= 1—d@ ap)— Y D> 1—d@ 2. (2.33)
n=1

k*=1,k*#k n=1

Assuming symmetrical distribution of the values represented by the hologram one can show that
the discriminant function is a function of the weighted sum of cosines of the phase difference of the
complex pattern representations (the sine components cancel out on the average under the given
assumption). Looking at the corresponding distance function 1 — cosx in comparison with the
underlying distance function of the Euclidean function z2, the basic effect is, that large differences
in feature values do not contribute quadratically more to the total distance than lesser differences,
as is the case for the square function. The two feature distances are depicted in Figure 2.2. A

1Tcos(x)
X005

L L L L L
3 2 -1 0 1 2 3

Figure 2.2: Comparison of cosine and square feature distance

very similar effect can be achieved by thresholding the individual feature distances at a certain
level, which was used on the IRMA database (compare Chapter 7). The effect of changing the
contribution function is task dependent, though.

The holographic method combines naturally with the usage of the Fourier transformation for
feature extraction, since the Fourier transform is a complex representation of the signal, where
magnitudes correspond to importance of a certain frequency in the image, but the phase informa-
tion contains highly relevant information in the case of image processing [65, p. 140]. If the Fourier
transform is used, there exists a connection to symmetric phase-only matched filtering (SPOMF,
see e.g. [15]), where the emphasis is also on the phase of the transformed image. The basic differ-
ences are, that in SPOMF the magnitudes are completely disregarded, while backtransformation
is done using the inverse Fourier transform rather than a sum of cosines measure.

Some of the advantages for the method of holographic classification are that with a binary represen-
tation of class labels a logarithmic reduction in complexity for large number of classes compared to
ANN can be obtained and that translation invariant recognition can be achieved without great cost
by using the fast Fourier transformation and the convolution theorem. Among the disadvantages
one can find that it is seemingly very difficult to model the mapping of real features to complex
ones with respect to the output symmetry, which is connected to the specific type of variability
present in the data. Furthermore the method has not been thoroughly investigated in software
and it is unclear whether the associative paradigm inherent in the method is suitable for pattern

recognition.



Chapter 3

Goal of this Work

He smiled with a curious kind of manic joy as he flipped again through
the mysteriously re-instated entry on the planet Farth. He had a
magjor piece of unfinished business that he would now be able to attend
to, and was terribly pleased that life had suddenly furnished him with

a seritous goal to achieve.
[4]

This section gives a short overview of the aim of this work. It originated from the interest in the
subject of invariant image object recognition, especially the use of tangent distance, at the Chair
of Computer Science VI (i6), and it was desired to perform a deeper investigation on this subject.
Thus, the goals of this work are:

e The description of current research in the field of invariant image object recognition and
invariant distance measures, including

— the evaluation of existing publications related to the subject and
— the development of possible extensions or new models.

e The theoretical study of topics related to invariant image object recognition, including

— the examination and description of the tangent distance model within a probabilistic
framework and
— the investigation of statistical properties of classifiers for image object recognition and
the relevance of domain knowledge for them.
e The experimental investigation of invariance models in image object recognition, as well as
the proposed extensions, including

— the implementation of algorithms apt to achieve invariance in image object recognition
and their incorporation into a statistical classifier,

— the investigation of the properties of tangent distance and other invariant distance
measures with respect to alternative approaches for invariance and with respect to
different tasks and

— the evaluation of the implemented classifiers with emphasis placed on the empirical
error rate and the comparison of the achieved results to those of other state of the art
classifiers.

This work describes the results obtained and the experience gained in the course of research and
implementation in the field of invariant image object recognition.
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Chapter 4

Invariant Image Object
Recognition

“Yes,” said Deep Thought. “Life, the Universe, and FEverything.
There is an answer. But,” he added, “I'll have to think about it.”

[1]

After some basic methods for pattern recognition have been introduced in Chapter 2, this chapter
is concerned with various methods one can apply to achieve invariance of the classification pro-
cess with respect to certain transformations. That is, one may be interested in the design of a
classifier that does not change its output when the pattern to be classified changes under some
transformation. Since this work concentrates on images as patterns, typical transformations of
the patterns include affine or projective transformations, although some of the methods presented
can be applied to arbitrary transformations as well. The reason for the importance of invariance
is that in many cases there exists domain knowledge about invariant transformations that do not
affect class-membership, so it is desired for the classifier to eliminate irrelevant variabilities, but to
identify meaningful differences. One example for the importance of invariance in image recognition
is depicted in Figure 4.1. Here an observation pattern is shown, which contains the object of a
handwritten digit ‘7’. If it is compared with the two references on the right side, a classifier based
on Euclidean distance would find that it is closer to the first reference, showing an image of the
digit ‘9’, because the sum of squared grayvalue differences is smaller than the one for the second,
‘correct’ reference. If the classifier used a distance measure invariant to line thickness of drawings,
it would find that the ‘correct’ image is actually more similar to the observation and therefore

7 77

Figure 4.1: Pattern to be classified (left), two prototypes. According to Euclidean distance the
pattern to be classified is closer to the first prototype. A distance measure invariant to line thickness
should find that the second, correct prototype is closer. (Compare [87])
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correctly classify the given pattern. Note that if a sufficiently large set of training data is available,
it would probably contain also versions of the digit ‘7’ with modified line thickness, such that the
advantage of invariance would be reduced.

In this work an image x is considered a real valued function on a discrete image grid consisting of
pixel locations from Z x J = {1,...,I} x{1,...J}, that is z € IR"”*”. On the other hand an image
can be considered a simple feature vector with one dimensional indices and dimension D =TI - J.
The graylevel value of an individual pixel at pixel position (7, j) will generally be denoted with z;;.
The modeling of images (or filters etc.) is in many cases done in the continuous domain, since the
discrete plane is difficult to handle. In that case, an image is considered a function z : R*> — IR
and one can consider the discrete version as the result of sampling the continuous function. The
considerations presented are mainly based on the paradigm of appearance based pattern recognition,
that is the regarded features are equal to the sequence of pixel values. Other approachess include
the extraction of local or global features, e.g. color, shape or texture.

There is an inherent connection between invariant recognition and image registration. The term
registration refers to the mapping of images with the same or nearly identical content onto each
other, such that the important structures are in the same image position. This is an important
paradigm for example in medical imaging, when images have to be compared that were produced
at different points in time. Usually, registration assumes images of the same content. But when a
powerful registration algorithm is at hand, it can be applied to invariant recognition, by using it
for normalization or determining the mapping function, hypothesizing each class in question and
comparing the results. On the other hand, when an invariant classification algorithm is known
that can return the transformation that connects two given patterns (which is the case for tangent
distance), the registration problem is solved as a by-product.

4.1 Invariant Classification

This section aims at giving an overview of the different methods for invariant classification, before
some of the methods are regarded in more detail. There exists a variety of techniques for solving
the problem of invariant pattern recognition [101]: “Such techniques include integral transforms,
construction of algebraic moments and the use of structured neural networks. In all cases we assume
that the nature of the invariance group is known a priori.” The last statement is quite essential
in most approaches. In contrast to the restriction to domain knowledge, a method to estimate
the derivatives of transformation from the given data is presented in Section 5.1. One approach
not mentioned here is the use of invariant distance measures, which play an important role for
this work. WooD furthermore states [101]: “Since we have prior knowledge of the classification
problem, we should be able to improve the generalization ability of any given pattern classifier by
incorporating this knowledge into the classification system.” Moreover, the author introduces a
distinction between invariance and tolerance, which will not be considered here, since in practice
complete invariance is often not obtainable or even not desired: “in practice only an approximate
invariance (which we might call transformation tolerance) may be obtainable. This may arise
through computational inaccuracies combined with the continuous nature of some transformation
groups.”[101] A theoretical statement of invariance can be given as follows [101]: Consider patterns
as functions on some set, e.g. in image recognition x : (4, ) € I X J + x;;, furthermore there exists
a classification function which maps patterns onto class numbers, e.g. r : z — 1,..., K and a
transformation group G which acts on the set the pattern is defined on and therefore on the pattern
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space, e.g. g € G : (gx)ij = 4-13;5), and does not affect class membership. Thus the desired
classification function should be invariant under the action of the group, that is r(gx) = r(z)Vg € G.
That is, the patterns with the same invariant content form an equivalence class with respect
to a group operation describing the geometric transform [14]. In practice, in some cases one
may want to restrict the actions of the group, e.g. in digit recognition in order to distinguish
between the digits ‘6’ and ‘9’. This is sometimes referred to as 6-9-problem. Other properties
of interest in invariant classification include discriminability, computational complexity, ease and
speed of training, generalization ability, flexibility and the possibility of transformation retrieval.
Note that discriminability is an important aspect here, as for instance a mapping of any feature
vector to a constant value yields a perfectly invariant mapping, which of course is useless for
classification. In some cases one may want to distinguish between global and local invariances,
depending on the context and the given data, but this distinction can be reduced to the assumption
of different transformations which are present. One trivial solution to the problem of invariance in
pattern recognition is employing brute force. In this context this means to compare all the possible
transformations of the patterns and extract the optimal coincidence.

In the following some different methods to deal with known invariances are presented. The dis-
tinction between the approaches is somewhat arbitrary, for example one can regard normalization
as a process of invariant feature extraction (normalized images are of course invariant with respect
to the chosen transformations) or one can define an invariant distance measure as the distance of
the normalized images. A further (equally arbitrary) distinction can be made concerning the time
step the invariant process takes place, since normalization and feature extraction usually are per-
formed before the actual classification process, whereas invariant distance measures and classifier
combination are methods used in later steps of the classification procedure.

4.1.1 Normalization

With the term normalization one usually refers to the construction of a canonical representation
for each pattern with respect to the regarded transformations. These representations can then be
compared without the influence of the differences of the transformations. One drawback of such
methods is that they may be very sensitive to noise and artifacts in the patterns.

For example one may use the following normalization procedure in order to achieve invariance with
respect to rotation, translation and scale for images (sometimes referred to as RST-invariance)
[35, 101]:

e compute the center of gravity and translate the origin to that point (translation-invariance)
e normalize for average radius (scale-invariance)

e rotate such that direction of maximum variance coincides with x-axis (rotation-invariance)

Fourier Spectrum Normalization

One method that was developed during this work involves the computation of the Fourier trans-
form. Since the amplitude of the frequency spectrum of the Fourier transform is invariant under
translation, it is frequently used for the extraction of invariant features. If the Fourier trans-
form is used in this way, usually the Phase information is neglected. Now the idea is to use the
phase information for translation normalization, the straightforward solution being to transform
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Figure 4.2: Result of normalization setting the first coefficients in the frequency domain to phase

zero

the image in such a way that the first coefficients in each dimension (corresponding to the low-
est frequencies) have phase zero. This corresponds to two degrees of freedom equivalent to the
x/y translation offsets, which are lost. This procedure, carried out in the frequency domain, has
effects on the remaining phases as well, which can be easily inferred from the definition of the
Fourier transform. The obtained result is that for consistency the phase differences at a particular
point in the frequency domain are given by the sum of the index of the point in each dimension
multiplied by the phase difference for the ‘first’ coefficients. That is, let ¢ = phase(X(1,0)) and
2 = phase(X(0,1)), then the transformation is given by the assignment of new phase information
according to

phase(X (i, j)) — phase(X (i, )) — (i - @1 + j - ¢2) (4.1)

Improvements to this straightforward solution are probably possible, since the changes in phase
depend on only two of the I - .J phases. Figure 4.2 shows the result of the applied normalization
after application of the inverse Fourier transform. The results are not very convincing, but one
advantage is, that most of the phase information can be kept using this method. No further
experiments have been performed yet and it is still open how the phase information could be easily
used for classification (note that the phase information is inherently ‘wrap-around’).

4.1.2 Invariant Features

If one wants to obtain a classification procedure that is invariant with respect to certain transfor-
mations, another approach is to calculate a set of features from the pattern, which is not affected
by these transformations but still contains all information relevant for classification. This ideal
view of invariant features can be expressed as [101]: “A complete system of invariants must be
able to distinguish with arbitrary precision between any two vectors not in the same orbit under G;
i.e. the system must possess perfect discriminability.” But in practice it is the case that a “com-
plete set of continuous invariants under a given representation of a given group does not always
exist.” [101] On the other hand complete invariance is not always wanted, for example for digits, as
complete invariance with respect to rotation would lead to the mentioned ambiguity between the
digits ‘6’ and ‘9’. Yet, invariant features may be very useful for other data as for example images
of red blood cells [19]. The process is described in [83] as “extraction of suitable features in signal
space prior to classification. These features should represent the patterns in S [the signal space]
uniquely up to redundant information; i.e. only patterns differing in superfluous parts should have
the same feature vector. Although this is a sound theoretical concept, no general strategy for
feature extraction is known. Sometimes it is even difficult to characterize the superfluous part of
the information in S. In many cases, however, it is possible to trace back this redundancy to the
action of a group G on S.” Yet, it must be considered that an invariant feature space does not
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exist for all kinds of transformation. In [83] the “nonexistence of such a space for the dilations and
any group containing the dilations as a subgroup” is proven. This can be illustrated by looking
at the scaling transformation. If features are required to be invariant with respect to scaling, all
images should lead to the same features as a single point.

A number of performance aspects for invariant features is presented in [14], which include com-
pleteness (ability to discriminate between all possible images), robustness (tolerate deterministic
and stochastic errors), continuity (clustering, metric) and computational complexity.

Features based on the Fourier Transform

Looking at the nature of invariant features that are extracted from images, one can distinguish
two main classes, those based on algebraic invariants (considered farther below) and “invariants
which are computable by integral transformations. Such transformations are generally based on the
Fourier transform (FT) and its variants”[101]. The continuous one dimensional Fourier transform
of a signal f(t) and the corresponding inverse Fourier transform is defined by [49]

+oo
Flw) = / F(t) exp(—iwt)dt
=
_ / F(t) (cos(—wt) + i sin(—wt))dt
T B
fie) = o F(w) exp(iwt)dw (4.2)

— 00

and the discrete Fourier transform (DFT) of a one dimensional signal and its inverse can be defined
by

= —i2mmk
F(k) = f(m)exp(M> k=0,1,....,.M —1
m=0
M-—1 .
1 2
fm) = MZF(k)exp<Z ?\I;m> m=0,1,...,M—1 (4.3)
k=0

The Fourier transform is an important and well known tool in many areas, which is partly due to
the existence of an efficient algorithm for the calculation of the DFT if the pattern size is an integer
power of two in all dimensions, called fast Fourier transform (FFT). The FFT in combination with
the convolution theorem also allows to efficiently calculate discrete convolutions. These aspects of
the FT shall not be considered here but for the extraction of invariant feature another property of
the FT is important, which is the invariance of the squared magnitude of the FT spectrum (also
called power spectrum) under translation of the pattern [65, 79, 74]. This is connected to the fact
that a translation of the pattern corresponds to a phase shift in the Fourier domain, which does not
affect the magnitude. Using this invariance property of the power spectrum one can obtain a set
of features invariant under translation by using the power spectrum of a given pattern as feature
vector. Doing this, one must be aware of the fact that by ignoring the phase of the spectrum a
lot of information is lost, which might be important for classification. This is reflected in the fact
that the power spectrum of a real valued image is symmetric and therefore the resulting feature
vector has effectively only half the number of dimensions as the original vector.
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If the FT is applied to higher dimensional object, as for example a two dimensional image, the
equations and properties extend analogously. What should be mentioned is the fact that the
spectrum of the FT is rotation variant, i.e. a rotation of the image is reflected in a rotation of the
Fourier spectrum, while it is inversely variant with respect to scaling.

Features based on the Fourier-Mellin transform

If more than just translation-invariance is desired, this can be achieved with variants of the Fourier
transform, e.g. the Mellin transform. This a Fourier transform evaluated over an exponential
scale, which is invariant under the scaling transformation [77, 101]. If aspects of the Fourier and
Mellin transform are combined in two steps together with a transformation to polar coordinates
of an image (resulting in a circular Fourier, radial Mellin transform), one can achieve invariance
with respect to rotation, scaling and translation simultaneously. The resulting transform is called
Fourier-Mellin transform and can be calculated in the following way [101]:

(1) Calculate the power spectrum of the Fourier transform of the two-dimensional input. This

is invariant under translation.
(2) Convert the power spectrum to polar coordinates. This converts rotations to translations.
(3) Perform a complex-log mapping. This converts scalings to translations.

(4) Calculate another two-dimensional Fourier transform power spectrum. This will be rotation-,

scale- and translation-invariant.

The resulting features are now RST-invariant, but a lot of information is lost due to usage of only
magnitudes in steps (1) and (4).

Local Features and Fourier Transform

The FT can also be employed to obtain locally rotation- and scale-invariant features in combination
with the Gabor transform or the Wavelet transform. Consider for example the Gabor transform
for the extraction of local features. The Gabor transform [49, 76, 65] is a so called windowed FT
or short-time FT (here the one dimensional case)

+o0o
Gylw, 1) = / Ff)ga(t — 7) exp(—iwt)dt (4.4)
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with a Gaussian window of the form

2
n(t) = 5 e (L) (4.5)
which is especially used for texture classification [7, 9]. It can also be used to extract additional
features for image classification, for example the gradient can be considered a special case of a
Gabor transform for low frequency, which was helpful in classification of chair images [18]. Now if
the answers of a set of two dimensional Gabor filters for different angles and different frequencies
are arranged on a grid, the DFT can be used to extract local features, which are invariant under
rotation and scaling [31].
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Fourier Descriptors, Complete Feature Spaces and Monomials

Another application of the FT is the extraction of Fourier descriptors for binary images. They
can be obtained by parameterizing the object boundary and analyzing the Fourier transform of
the resulting boundary function [14]. These Fourier descriptors are invariant with respect to
translation and rotation and can be enhanced for affine invariance. The Fourier descriptors for
shape can be generalized to grayscale objects (given a separation from the background) by not only
parameterizing the object boundary but also the grayvalue distribution. BURKHARDT et al. state
that the performance of affine invariant gray level Fourier descriptors is superior to that of affine
invariant moments, “because they are less sensitive to noise in real applications”[14].

The authors furthermore derive some results about the existence of polynomial invariant complete
feature spaces, which allow to distinguish different patterns, but yield the same features for patterns
that are transformed. They prove that there exists a complete feature space, if two conditions are
fulfilled:

1. The representations of the transformation group are completely reducible (and therefore the
set of invariants is finitely generated).

2. The orbits of the transformation group are closed in the Zariski topology (and therefore
separating polynomial invariants exist).

For a lack of space (and time) the complete elaboration of the notions is not feasible in this
presentation. But it might be interesting to observe, that from the theorem it follows, that for any
finite group a complete feature space exists.

Furthermore, the authors give constructive results about invariants for finite transformation groups
and show that a basis of invariants can be given using group averages. A group average f of a
polynomial f is defined by
@)=Y flg(a)). (4.6)
geG

A basis can then be constructed by calculating all monomials :I:goxll’l e xl]’\}v with the sum of the

exponents less then or equal to the group order. The calculation of a basis from group averages
becomes impractical for large dimensions of the signal space, but using certain mappings it is
possible to obtain high separability with only a few group averages of monomials [14].

Features based on Moments

Algebraic invariants, or moment invariants, are obtained by taking quotients and powers of mo-
ments. A moment is a weighted sum of the pattern x;; over the whole input field, with weights equal
to some polynomial in 4,5 [101]. The geometrical moments or regular moments in two dimensions
are defined by

Mp,q = 70 /Doxp y? fz,y) dv dy (4.7)

—0o0 —00

and analogously for discrete functions as digital images by

Mp,q = Z Zip 3% f(i, ) (4.8)

i=1 j=1
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Some interpretations of these moments are for example that mg o corresponds to the surface of the
object and my g/mg,o corresponds to the first coordinate of center of gravity. To be invariant with
respect to translation, one can use the central moments and the centralized image:

J P q
. mi.0 X mo.1 ..
=) i——0 -1 i 4.9
Iip.q _1( mo,o) <] mo’o) [, ) (4.9)

i=1 j
Furthermore, to be invariant with respect to scaling, the normalized moments can be regarded:

ptq

Mo = Hpa/tony > P+Hq=2,3... (4.10)

Hu proposes 7 (polynomial) combinations of these basic moments as invariant features, which are
translation-, scale- and also rotation-invariant [46]. These invariant features seem to work well
only on binarized patterns in absence of distortion and/or noise, which is reflected in extremely
low recognition rates for example on the USPS digit recognition task [77]. This is consistent with
the statement that “Regular moments are highly noise-sensitive.” [101]. Another form of moments
based on pairwise orthogonal Zernike polynomials are the Zernike moments, which are rotation
invariant and even RST-invariant if normalized and “outperform other kinds of moments” [101].

Other Invariant Features

Among the remaining approaches to extract invariant features, one should mention the use of
cooccurrence matrices, which describe the distribution of pairs of grayvalues occurring at pixel
positions which are separated by a certain displacement. These are translation-invariant and can
be extended to rotation invariance if matrices for displacements of the same lengths are combined.
Furthermore all histogram based features are naturally invariant with respect to rotation and trans-
lation. Based on this fact, RT-invariant histogram based features are presented in [85]. They are
computed using a nonlinear, invariant integration method consisting of integrating a nonlinear
function with local support (hence local invariant features) over all considered transformations.
Then a histogram of these features is used for classification. Furthermore, in [86] a technique
for fast calculation of these features using a Monte-Carlo-Method is presented. In [12] the usage
of invariant moments of contour lines as features for object recognition in digital radiographs of
the IRMA database is proposed and proves more successful than Fourier coefficients or invariant
(elastic) signatures.

4.1.3 Invariant Distance Measures

While normalization and the extraction of invariant features aim at the elimination of the consid-
ered transformations before the actual classification process, invariance can also be incorporated
directly into the classifier. This can be done by using invariant distance measures. An invariant
distance measure would ideally have the property that the distance between two patterns is al-
ways equal to the minimum distance between the ‘best matching’ transformed instances of those
patterns. Since the orbits that arise from regarding the set of all possible transformations of a
pattern form a manifold in pattern space, this ideal invariant distance is called manifold distance.
A definition of a manifold is given for example in [42]: A manifold is a locally Euclidean space
together with a differential structure. “One can think about a manifold as a way to piece together
“bent” pieces of IR"™. Thus the manifold has the same local properties as IR", but may have dif-
ferent global properties. One can also think about a manifold as a generalization of surfaces in
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IR™.” The main problem with the notion of a manifold distance is that it is in most cases a very
hard problem to determine the minimum distance, because the manifolds are difficult to handle.
A few approaches to this problem of modeling the manifolds are discussed in Section 4.2.2, one of
which consists in following the surface of the manifold in small steps, a method reminding of the
Euler-Cauchy method for handling differential equations.

Since probability density functions are often based on a distance function, one can use invariant
distance measures to define transformation invariant probability distributions. On the other hand
one can show (see Section 5.1) that starting from a distribution invariant with respect to some
transformation an invariant distance measure can be derived. The two concepts may therefore be
regarded as equivalent.

The most common distance measure encountered is (squared) Euclidean distance, which is also
inherent in the normal distribution (with the identity matrix as covariance matrix). For images
the squared Euclidean distance is defined by:

I J
Az, p) = llz = pl* =D Ny — iyl (4.11)

i=1 j=1

There are many other distance- (respectively similarity-) measures used in pattern recognition, like
the dot product of two vectors z”7 -y = ZdDzl Tqlg, which is used as a similarity measure and is
related to the angle 6 between two vectors
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& cosf = T K

6 = arccos . _
]| {]l] (]| ]l

(4.12)

where the cosine of the angle is also called normalized dot product. A connection to the Euclidean
distance is given by the relation

le =l = [l = 227 - g+ [l (4.13)

which can be simplified if the two vectors are normalized to ||z|| = ||u|| = 1 to ||z — pu||?* =
2(1 —aT - y). This relation is also helpful for pattern matching in larger images, that is, if the best
fitting match x (a part of a larger image) to a reference u is desired. In that case the Euclidean
distance can be decomposed into a term independent of the position (||u]|?), a term easily calculated
for each position of the smaller template in the image (||z||?, only the sum of squares of the border
needs to be considered when stepping through the image) and a convolution (27 - ;) which can be
efficiently calculated using the FFT.

These distance measures are not invariant with respect to variations in the images like affine trans-
formations, in fact they are very sensitive to such distortions. In the context of image object
recognition SIMARD et al. introduced a new locally invariant distance measure called tangent dis-
tance [89]: “Memory-based classification algorithms such as radial basis functions or K-nearest
neighbors typically rely on simple distances (Euclidean, dot product...), which are not particularly
meaningful on pattern vectors. More complex, better suited distance measures are often expensive
and rather ad-hoc (elastic matching, deformable templates). We propose a new distance measure
which (a) can be made locally invariant to any set of transformations of the input and (b) can
be computed efficiently.” Since tangent distance is one of the main topics of this work, it will be
regarded in more detail in Section 4.2. There are also other methods as elastic matching methods,
which try to fit an elastic model to the observation and determine the distance as a function of
the necessary deformation and the remaining differences between deformed model and observa-
tion. The elastic matching models are in turn related to methods based on dynamic programming
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such as warping and Levenshtein-Moore distance, which will be considered in Section 4.4. For an
empirical comparison of different distance measures see also Sections 7.1.9 and 7.2.5.

In connection with invariant distance measures one should also mention invariant discriminant
functions, like invariant ANNs, based for example in the tangent prop(agation) algorithm [90, 91].
Invariances from a priori knowledge is here incorporated by “a scheme that minimizes the deriva-
tive of the classifier outputs with respect to distortion operators of our choosing”[91]. That is,
the network directly learns the effect of the regarded transformations using directional derivatives
as regularizers (the output derivative should be zero for changes due to these transformations).
Another method to achieve invariance in such implementations of ANN for discriminant functions
is to enforce weight sharing between the connections in the ANN [101]. Similar methods have also
been used in autoassociative multilayer perceptrons [84]. Finally, a method to obtain transforma-
tion tolerance in an ANN is to present each input pattern in a number of positions in its invariance
group orbit to the network during training. This is a method also applicable to other classification
algorithms and will be regarded in the following section.

4.1.4 Extended Data and Classifier Combination

A simple way to incorporate invariance into a classifier is the explicit generation of transformed
data to be used, which may be called virtual data. The brute force method already mentioned
would be to produce all possible transformations in order to achieve complete invariance, but this
is not feasible in most practical settings. Therefore, one usually restricts the multiplication of the
data to a few variants of the transformations. This can be done for the training data, which is
quite a common approach, but the method is also efficient if used for the test samples. The two
methods are considered in the following.

Multiplication of the Training Data

Using the domain knowledge about transformations of the patterns that do not affect class mem-
bership, it is easy to generate virtual training data from given training data. One only needs to
apply the transformation to the patterns using different parameters and thus obtains new data
(which keeps its class labels) since the class does not change under the used transformation. Note
that this approach is different from adding more samples to the training data, because the data
is generated from existing samples automatically. This is reflected in the statement “Distortion
models can be used to increase the effective size of a data set without actually taking more data.”
[8] For example, the domain knowledge about invariance with respect to image shifts in optical
character recognition can be used to implicitly enrich the training set with shifted copies of the
given training data. In the experiments for this work, displacements of one pixel in eight directions
were used, leading to an increase in the effective training set size by the factor nine. Besides the
incorporation of invariance into the classifier this has the additional advantage that the estimation
of parameters becomes more reliable due to the increase in examples. With respect to this subject
VAPNIK states: “[...] when one has a relatively small amount of training examples, the effect of
using a priori information can be even more significant than the effect of using a learning machine
with a good generalization ability. [...] this is not true when the number of training examples
is large. However, in all cases to achieve the best performances, one must take into account the
available a priori information.” [98] Two possible drawbacks of this method are that the user
must choose the magnitude of the transformation parameters and the number of instances to be
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generated beforehand and that the generated data is highly correlated [91].

The approach can be used with most classification approaches and has led to good results in optical
character recognition (for a comparison see Chapter 6) It has been used for invariance in neural
nets (LECUN on NIST 600,000 training examples, 0.9% ER [98]), in support vector machines (in
that context only new support vectors need to be constructed, 0.8% ER on NIST data [98]) and for
boosting neural networks: “Using models of characters (the same that was used for constructing
the tangent distance) and 60,000 examples of training data, H. Drucker, R. Schapire, and P. Simard
generated more than 1,000,000 examples which they used to train three LeNet 4 neural networks,
combined in the special “boosting scheme” (Drucker, Schapire, and Simard, 1993) which achieved
a 0.7% error rate.” [97, p. 159], the citation refers to [26].

Multiplication of the Test Data

As it is possible to use the knowledge about invariance for the training data by applying both
tangent distance and explicit shifts, this should be the case for the test data as well. Here the
interpretation is not as straightforward as for the training data case, but inspired by methods for

combining classifiers [57] one can arrive at the following solution called virtual test sample method
(VTS):

When classifying a given pattern, transformed versions of the pattern are generated (using the a
priori knowledge about the data) and independently classified by the same classifier. The overall
decision is then obtained by combining the individual results using the sum rule (“the sum rule
and its derivatives consistently outperform other classifier combination schemes” [57]), i.e.

p(zlk) =Y plz, alk) (4.14)

where a denotes the used transformation parameters. Note that in the case of VTS, the motivation
for the sum rule differs from that proposed by KITTLER. To justify the sum rule in the case of
using multiple classifiers to classify a single test pattern, he assumed that the posterior probabilities
computed by the respective classifiers do not differ much from the prior probabilities. In contrast
to this, using multiple test patterns and a single classifier, the sum rule simply follows from the
fact that the transformations considered are mutually exclusive, if we assume that the respective
prior probabilities are equal (e.g. the prior probability for a right shift should be the same as for
a left shift, which seems reasonable). More detailed discussions of this method can be found in
[20, 17]. One advantage of the VTS method is that one is able to use classifier combination rules
and their benefits without having to create multiple classifiers. Instead, one simply creates virtual
test samples. Thus, classifying a pattern has the same computational complexity as compared to
using any other classifier combination scheme, yet the (computationally expensive) training phase
remains unaffected. VTS thus leads naturally to a certain invariance of the resulting classifier to
the transformations regarded in multiplying the test data.

4.2 Tangent Distance

This section is concerned with a more detailed discussion of one particular invariant distance
measure “using important a priori information about invariants of handwritten digits incorporated
into a special measure of distance between two vectors, the so-called tangent distance.” [98]
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Figure 4.3: Examples for tangent approximation using Eq. (4.18)

Two major advantages of this measure are its general purpose applicability and its computational
simplicity.

4.2.1 Overview of Tangent Distance

In 1993, SIMARD et al. proposed an invariant distance measure called tangent distance (TD), which
proved to be especially effective in the domain of OCR [89]. The authors observed that reasonably
small transformations of certain image objects do not affect class membership. Simple distance
measures like the Euclidean distance do not account for this, instead they are very sensitive to
affine transformations like scaling, translation, rotation, shearing or axis deformation. When an
image is transformed (e.g. scaled and rotated) by a transformation ¢(x,«) which depends on L
parameters o € IRY (e.g. the scaling factor and rotation angle), the set of all transformed patterns

M, = {t(z,a) : a € R*} c R™/ (4.15)

is a manifold of at most dimension L in pattern space. The distance between two patterns can
now be defined as the minimum (squared) distance between their respective manifolds, being truly
invariant with respect to the L regarded transformations:

yanisora (2, 1) = min [tz az) — t(p, @,)|*} (4.16)
ag,a, €ERE

Unfortunately, computation of this manifold distance is a hard non-linear optimization problem
and the manifolds concerned generally do not have an analytic expression, since a “simple image
translation corresponds to a highly non-linear transform in the high-dimensional pixel space” [87].
Therefore, small transformations of the pattern x are approximated by a tangent subspace M, to
the manifold M, at the point . This subspace is obtained by adding to x a linear combination of
the vectors 2,1 = 1,..., L that span the tangent subspace and are the partial derivatives of t(x, «)
with respect to ;. These so called tangent vectors x; = w are also called Lie derivatives of
the transformations. Using the first order Taylor series approximation, i.e. the Taylor expansion

of t(-,-) around oo = 0

L ot(a,a) L
t(z, ) :x—l—ZalTa’l—i—O(az) mx—i—Za;xl (4.17)
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one obtains a first order approximation of the Manifold M, , which has the considerable advantage
of being a linear function in «. It is therefore analytically and computationally easy to handle.

L
]\/:fm:{x—i—Zapxl ca € RF} c R (4.18)
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The tangent vectors z; can be computed using finite differences between the original image x and
a reasonably small transformation of x [89]. The computation of the tangent vectors is considered
in more detail below. Example images that were computed using (4.18) are shown in Fig. 4.3 (with
the original image on the left). The description of the transformation by the tangent approximation
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Figure 4.4: Images obtained by shifting a digit and by finding the closest point in the tangent

space, original image in the middle. The upper row shows the shifted images with the closest
tangent approximation in the lower row. Schematic illustration on the right. The transformation
t is a horizontal shift here and « corresponds to the displacement of one pixel

is locally invariant, but not globally invariant. This may be a disadvantage in some cases, but it
also can be an advantage, since global invariance is not desired in many cases. For example one
does not want to model complete rotational invariance in digit recognition or it is not desired to
compare all images at a scale of one pixel.

Some examples for the linear approximation are given in Figure 4.4, which shows images of the
digit ‘5’ obtained by shifting the original image and finding the closest corresponding image in the
tangent subspace for translation. On the right a schematic illustration is given. One can see that
the approximated image corresponds well to the shifted image for shifts with a displacement of
one pixel (second and fourth column), but the linear tangent subspace cannot describe well larger
shifts (see outer columns, the images are almost identical to the ones obtained for one pixel shifts).

Now, it is possible to define a tangent distance using the approximations on the side of the obser-
vation, on the side of the reference or both. The single sided (SS) (squared) tangent distance with
tangent approximation on the side of the observation dsg ,(x, 1) is defined as

L
des . (T, 1) = nquL{nHZal cx— (4.19)
@ =1

and analogously the single sided TD with tangents on the reference side dgg . (z, i) is defined as

L
dss (T, 1) = rélgL{llw— (n+ > on-m)|*} (4.20)
@ =1

Finally, the double sided (DS) tangent distance dps(x, 1) using both linear subspaces is defined by

L L
dos(a, ) = min_ {[(@+ > ap-a) = (4> o w)lP) (4.21)
ag,a, €RE =1 -1

The resulting distances are illustrated in Figure 4.5. It shows the linear subspaces M, and M, as
well as the projections of reference and observation in the opposite subspace. The four regarded
distances corresponding to the use of the tangent subspace on either side are also shown. Care
should be taken in extrapolating this figure to higher dimensional spaces, since the ‘probability’ that
lines (respectively hyperplanes) intersect in a higher dimensional space is much smaller. (Compare
also page 91.)

The minimization can be easily solved, since the problem is linear. It amounts to solving a linear
least squares problem or to computing an orthogonal basis of the tangent subspace and then
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Figure 4.5: Schematic illustration of the points of interest in double sided tangent distance

calculating the minimizing « by scalar products of the vector  — p and the base vectors (compare
also Section 5.1). These two methods have about the same computational complexity. A more
efficient way to calculate the single sided distance (considered in the references here) is possible,
if many comparisons are made as for example in a nearest neighbor classifier. In that case, an
orthonormal basis of the tangent subspace is precalculated and the distance can be determined as
follows with about half the computation time:

L

d(a,p) = o = pl* = (@ = )" - )? (4.22)
=1

Note that this method can only be used, if no subsequent steps are performed that use the closest
point z’ in the tangent space, because the coefficients o are not determined. If z’ is needed
(e.g. for further computation of the image distortion model presented below), one can compute
the projection and then calculate Euclidean distance.

Determining the Tangent Vectors

Tangent distance was introduced for the use within an OCR system and the application of seven
transformations was proposed. These transformations consist of six accounting for affine variations
of the image and one that models a line thickness deformation. Although these transformations
proved especially useful for the recognition of handwritten digits, tangent distance can in principal
be used with any transformation that allows to compute its derivative in a certain point effectively.
In the following the derivation of the seven basic tangents is described, following the descriptions
in [98].

Consider the affine transformations of the image grid given by

7! 1+ o o ) Qs
O-C 2O

Then one can determine the derivatives x1,...,xg with respect to the six parameters and the
heuristic tangent x7 for line thickness (which corresponds to the squared gradient) as presented in
the following:
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horizontal translation:

a=0,1=1,2,3,4,6 i =i+ as i=j
n(ij) = lim i+ as,j) = 2(i.j) (4.24)
Q5 — (6751
vertical translation:
a=0,1=1,..,5 i =1 j =7+ ag
w2(i,j) = lim 20, + o) =20 J) (4.25)
Qg — Qg
rotation:
oap=0,1=1,4,5,6 oy = —a3 =i+ asj j'=7—ast
va(if) = lim SU02rd—asi) =a6)) (4.26)
az—0 [6%)
o Pt asig —ai) —a(ig —ag) el - ogi) — (i)
az—0 (%) az—0 (D)
scaling:
a=0,1=2,3,56 o1 =y i =i+ aqt j=7+aj
axis deformation:
o =0,1=1,4,5,6 o = (3 7 =i+ asj j =i+ asi
diagonal deformation:
a=0,1=2,3,56 Q) = —ay i =1+ agt j=7—ayj
line thickness deformation:
. .2 L2
z7(6,5) = (21(3,5))" + (z2(4, 7)) (4.30)

Note that the above equations do not exactly describe the named transformations, e.g. the param-
eters for a rotation of angle ¢ are given by

1+ aq Qs _ cos¢  sing (4.31)
Qs l+as ) \ —sing coso '

so the setting given in (4.27) is correct for the limiting case of small angles of rotation and therefore
the derivatives coincide. Nevertheless the transformations from (4.24) to (4.29) span the whole
group of affine transformations. Equivalently one could use the six transformations resulting from
setting five parameters to zero and varying the remaining one as a basis. In that case it is hard
to find mnemonic names for the resulting canonical basis transformations, though. The resulting
four transformations for the linear component then have the form

z3(i,j) = jxi(i,j)
z4(i,5) = jw2(i,])
z5(i,j) = ix1(i,j)
z6(i,§) = ixa(i,]) (4.32)
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Figure 4.6: Images obtained via tangent approximation of the basic 7 transformations. First
column: Original image, column 2-8: positive tangent direction, column 9-15 negative tangent
direction

Figure 4.6 shows images obtained via tangent approximation of the basic transformations. The
original image is shown on the left of each row, followed by seven images for positive tangent tangent
direction and seven for negative tangent direction. The tangents are applied in the order horizontal
translation, vertical translation, diagonal deformation, axis deformation, scaling, rotation and line
thickness. It can be observed that the modeled variation is high and the approximation is visually
correct for the chosen parameters.

In the following, a different way to derive the tangents is presented, which allows easier considera-
tions of other transformations of the image grid. For the model, a pattern is considered a continuous
function x : IR x IR — IR. Now a coordinate transformation of the plane ¢ : IR Xx IR — IR x IR is
considered, e.g. as before affine (with parameters at zero representing identity):

t(i,j) = (t1(2, ), t2(i, j)) = ((a1 + 1)i + aoj + a5, azi + (aa +1)j + ) (4.33)

Now for each image grid point the partial derivative with respect to the transformation parameter
is sought using the chain rule:

Oor Ox Ot
A= A Ao 4.34
Oda Ot da (4.34)
where %f is composed of the local x- and y-gradient (since t,—q = id), that is
or,. . Ox,. . Ox,. |
a(%]) - (E(/ij)v 871(7’73)) (435)

In the following two examples for the application of this method are given for affine transformations.

e x-translation (o =0, 1 =1,2,3,4,6)

O awmolid) = (1,0 (436)
%(ivj”aszo = (86%(7/,])’ %(Z,]))(l,O)T = %(Z,j) (437)

That is, the derivative is the x-gradient.
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e scaling (o; = ay = «, other parameters 0)

2 (i oo = i.9) (4.39)

or . . 0w Qx. . .o O, . dn,
E(%J”a:o - (aZ (Zaj)a a] (Zaj))(la]) _182 (Z,j)+]aj (’La]) (439)

Conforming the previous result

This derivation makes it easier to extend the approach to other than affine transformations,
e.g. projective transformations with

o o L (a1+1)i+a2j+a5 a3i+(a4+1)j+a6
t(z,7) = (t1(2,7), ta(1, = - - , - - 4.40
(1) = (i)t ) = (POl ottt ) (4.40)
The resulting tangents are the same for the first six parameters, and for the remaining two one

obtains the result

x7(i,j) = *225(%7) - Z]E(Z’j) = *12901(%]) —ijxa(i,j) (4.41)
and
938(%]) = *Z]E(%J) 7j287j(2’j) = *1]1?1(17]) - J2I2(l,J) (442)

Finally, it should be mentioned that there exists a third way to derive the tangents, using the
first order Taylor approximation at the parameter values for the identity transformation, and then
differentiating with respect to the transformation parameters, which was presented in [37] and
yields quite similar results to the previous ones.

As an application of the tangent method one may want to consider the following image illumination
model involving a multiplicative and an additive brightness parameter, c; and as respectively,
where each image pixel is subject to the transformation

t(z,a1,02) = oz + Qs (4.43)

Now the differentiation is straightforward, since no transformation of the image grid is present,
but the pixel values are transformed directly. The derivation of ¢ with respect to a; yields the
image vector = as a brightness tangent vector and the differentiation with respect to ag yields a
constant brightness tangent vector. These results are so easily obtained, because here the manifold
resulting from applying the transformation is linear itself. This means that the result is not an
approximation, but the exact representation of the orbit. Note that, if this illumination model
is applied in double sided tangent distance, all patterns will have zero distance, because the null
vector is always element of the tangent subspace.

Calculating the Tangent Vectors

To determine the derivatives in horizontal and vertical direction at the individual pixel locations,
one must choose a method to cope with the discrete nature of digital images (since the derivative
is a continuous concept). For that one has three possibilities:

(1) use finite differences

(2) convolve with a smooth kernel function (yielding a differentiable function), then differentiate;
equivalently differentiate the kernel first, then convolve
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(3) smooth the image, then use finite differences

where basically (3) describes a method identical to (2). In (2) and (3) the scale of the used kernel
function, for example a Gaussian kernel, controls the locality of the tangents. If a large kernel
is used, the approximation will fit better to larger transformations, while a smaller kernel models
local transformations better. The discrete counterpart of a Gaussian kernel is the binomial kernel.
The 2D binomial kernel can be obtained by calculating the outer product of a row from Pascal’s
triangle (a vector of binomial coefficients) with itself, e.g. the 3 x 3 binomial kernel is given by

112
1 1 1

(2. =12.10)'==—[214|2 4.44
4(,,)4(,,) 1612 (4.44)

There are several possibilities to calculate the discrete derivative. One may resort to local differ-
ences which yields the following filter mask (for differentiating along the horizontal axis)

(4.45)

But this rather calculates the derivative at a position between two pixels than at a certain pixel
location. Therefore one may consider a parabola fitted to the values of three consecutive pixels
and take its derivative at the center position. This leads to the filter mask

=0 (1.1

The Sobel operator combines differentiation with a smoothing kernel. Its four directional variants
are given by [65, p. 213]:

1 0 -1 1 2 1

1 1
Si=7/20 =2 | =7/ 0 0 0
1 0 -1 -1 -2 -1
1 -1 -2 1 -2 1 0
2 1 0 0 1 2

For tangent calculation, only the horizontal and vertical filters are needed, but it might be a useful
extension to also use the diagonal operators, when the direction modeled at a certain pixel position
is diagonal.

In the experiments carried out for this work, different templates starting from the Sobel operator
were evaluated for tangent calculation and best results were obtained by the template shown in
Fig. 4.7. (The template for calculation of the tangent for shift in horizontal direction is depicted.
The vertical template is the result of a 90° rotation) This ‘modified Sobel operator’ performed
slightly better (about 0.2% absolute improvement in error rate) than the basic Sobel operator on
the IRMA corpus and on the USPS corpus when Tangents were used on the observation side. For
the reference side no improvements were obtained.

Figure 4.8 shows the result of tangent vector calculation using the methods introduced for three
examples from the USPS database (see Chapter 6). The tangents are presented in the order hor-
izontal translation, vertical translation, diagonal deformation, axis deformation, scaling, rotation
and line thickness. Bright pixels represent increase in grayvalue, while darker pixel stand for a
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Figure 4.7: Template used for tangent calculation
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Figure 4.8: Tangent vectors for USPS data. The first column shows the original images, followed by

the tangents for horizontal translation, vertical translation, diagonal deformation, axis deformation,
scaling, rotation and line thickness.

decrease (except for the line thickness tangent, that only consists of non negative values; here
dark regions correspond to large values). It can be observed, that the line thickness tangent cor-
responds to a gradient image, as expected and that the remaining tangents seem to model the
desired transformations well.

4.2.2 Extensions to Tangent Distance and Further Considerations

This Section contains some considerations with respect to tangent distance, including presented
extensions to tangent distance, connections to the intrinsic dimensionality, considerations about
approaches to model the transformations more closely and the hierarchical filtering approach.

Extensions to Tangent Distance

Some extensions to the basic tangent distance methods have been proposed.  SIMARD
et al. proposed to use tangent distance within a nearest neighbor classifier and achieved excel-
lent results with this approach [89]. Before this, it had already been applied in a different variant
to neural networks [91]. Other natural extensions (which are actually not extensions to tangent dis-
tance itself) are to incorporate tangent distance into a kernel density or Gaussian mixture density
based classifier and to combine it with other methods to achieve invariance, like data multipli-
cation or other invariance models [20, 51, 23]. Partly, these approaches have been tested in the
experiments for this work. In [100] the authors furthermore proposed a “multiresolution tangent
distance, which exhibits significantly higher invariance to image transformations” applied to larger
invariances. Two other approaches called ‘tangent centroid’ and ‘tangent subspace’ have been
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presented in [38], which have the aim to represent subsets of the training data and are examined
more closely in Section 7.1.2 and inherently connected to the considerations of Section 5.1.

Intrinsic Dimensionality

There exists an important connection between the concept of the manifold in the context of tan-
gent distance and the concept of intrinsic dimensionality as presented by FUKUNAGA in [32, pp.
280ff]. The following quotation expresses this connection: “Whenever we are confronted with high-
dimensional data sets, it is usually advantageous for us to discover or impose some structure on
the data. Therefore, we might assume that the generation of the data is governed by a certain
number of underlying parameters. The minimum number of parameters required to account for
the observed properties of the data, n., is called the intrinsic or effective dimensionality of the data
sets, or, equivalently, the data generating process. [...] The geometric interpretation is that the
entire data set lies on a topological hypersurface of n.-dimension.” The author goes on to state
that a measure of the dimensionality is the number of dominant eigenvectors of the covariance
matrix and that these form the effective subspace, but that this approach is only suitable for linear
surfaces. For nonlinear surfaces the intrinsic dimensionality can be determined locally, similar to
the local linearization of a nonlinear function. Therefore it is also called local dimensionality. This
is closely connected to the considerations presented in Section 5.1, where methods to estimate the
directions of variation are derived based on dominant eigenvectors of the (local) covariance matrix.

Modeling the Manifolds

Several methods have been proposed to model the manifolds that arise, when a pattern is subject
to some transformation, more closely than it is done by the linear tangent subspace. One straight-
forward method is to approximate the orbit of a pattern using an iterative procedure based on
Newton’s method [34, pp. 1138ff.]. The extension of tangent distance with an iterative Newton-type
approximation was proposed in [89] and successfully used for face-recognition [100]. The algorithm
for the calculation of the distance between two patterns x and p consists in alternating the follow-
ing steps until a suitable convergence criterion is reached (considered here for single sided tangent
distance in p):

(1) calculate Mu and z’, the projection of x with the corresponding parameters o

(2) apply the (nonlinear) transformations (e.g. scaling and rotation) to p using the parameters

« and continue with this transformed version of

One drawback of this method is, that in step (2) the exact transformation of the pattern needs
to be calculated. If this shall be avoided, one can use a similar algorithm inspired by the Euler-
Cauchy method used in the context of differential equations. In contrast to the Newton procedure
it does not require the calculation of the actual transformation but uses the tangent approximation
instead. That is, step (2) in the above algorithm is replaced by

(2) apply the linear approximation of the transformations to p using the parameters o and
continue with this transformed version of p, that is, replace p with z’

This algorithm was used in the experiments carried out for this work. It conceptually consists of
iteratively calculating the closest point in the tangent subspace, “moving” into the corresponding
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Figure 4.9: Low-dimensional example of translation manifold

direction and recalculating the tangents until convergence. One drawback of this version is that
the manifold is not modeled as closely as with the Newton-type algorithm. Yet, one can use smaller
movements in step (2) of the algorithm and thus model the manifold with arbitrary precision. For
that, the assignment p «— pu+ (2’ — p) is generalized to p «— p+ (2’ — p) for some displacement
fraction v < 1, where the precision increases for v — 0 as well as the number of necessary iterations

until convergence.

An interesting question that arises in this context is, whether the manifolds can be calculated
explicitly. In the case of the affine transformations there seems to be a way to derive an exact
representation. Since the tangent to the manifold is a linear function of the pattern itself at any
point (which is not true for line thickness), the manifold should be the solution to a differential

equation of the form
or

Oa
which can be solved by standard methods [28, 11, 34]. At this point one encounters the problem,

(o) = Az(a), x(0)=2xg (4.48)

that the image is not continuous, but the differential equation models a continuous transformation.
In the case of images, since they are inherently discrete signals when represented in a computer,
this leads to an increasing blur in the images when infinitesimal steps are taken along a direction
that is correct only for discrete steps. The solution to this problem is to resort to linear difference
equations. These model the manifold according to the relation

zla+l)=z(a)+Azx(a) =T+ A) z(a), x(0) =z (4.49)

Yet, the problems arising with this model seem still complicated. For example it seems necessary
to use wrap-around in the pattern in order to keep the matrix A non-defective, which is necessary
for the determination of all eigenvalues and eigenvectors, and the treatment of larger system seems
quite a difficult problem. For example, the authors of [79] state “We consider the problem of
finding all eigenvectors of a nonsymmetric matrix as lying beyond the scope of this book.” A
low dimensional example of dimension three has been successfully treated in the course of this
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work and is depicted in Figure 4.9. The pattern (0,1,0)7 was used together with a cyclic shift
as transformation. The solution to the arising linear difference equation can then be obtained
easily, but it remained open, which methods could be used for higher dimensional problems. The
figure depicts the obtained manifold, correctly describing the transformation, together with a linear
interpolation of the discrete transformation steps.

HASTIE & SIMARD state in [37] that “Deriving the manifold exactly is impossible, given a digitized
image, and would be impractical anyway.” The considerations just presented seem to imply that
the first part of this citation is not true, although the second part seems to be a correct statement.
The remaining question now is, whether a direct computation of the exact manifold distance would
lead to better results than the tangent distance, and if so, under which circumstances. For example,
looking at the remaining test errors (see Figure 7.1) of the USPS database, it seems very unlikely
that on this particular database a better method can be developed easily.

While the previously described methods are based on a single pattern, from which a description
of the manifold is derived, some methods have been proposed for description of the manifold
from a set of patterns. For example HINTON et al. use a blended linear approximation to the
manifold fitted with an EM based algorithm [43]. This method can be viewed as a mixture
density implementation of the approaches proposed in Section 5.1. A similar approach is taken by
BREGLER & OMOHUNDRO in [13], interpolating between specified images with “manifold learning”
by “inducing a smooth nonlinear constraint manifold from a set of examples from the manifold”,
while linear interpolation just averages the two pictures. The underlying principle of the approach
is basic, i.e. a “mixture model of local linear patches” is fit to the data by clustering, PCA and
EM. The final step of interpolation is then achieved by (different methods) of projection into the
manifold.

Hierarchical Filtering

Since tangent distance is computationally more expensive than Euclidean distance one can use
Euclidean distance as a “prefilter” [89, 88]. This method of hierarchical filtering is a special ap-
proach for distance based classifiers where different distance measures with different reliability and
computational costs are available. It consists of first computing the less costly distance (e.g. the
Euclidean) and sorting out the most unlikely samples. In a second step the distances for the
remaining samples are recomputed using the more expensive distance measure (e.g. tangent dis-
tance), yielding better estimates of the respective distances. Generalizing this, “In the case of
images, another time-saving idea is to compute tangent distance on progressively smaller sets of
progressively higher resolution images.” [89] For example, in the experiments performed with pre-
filtering on the USPS database with about 7000 training samples, it was observed that a Euclidean
prefilter which extracts 100 samples before calculation of tangent distance already was sufficient
in the sense that a larger set did not change classification results.

4.3 Image Distortion Model

Tangent distance compensates for small global changes, since the tangent vectors are applied to the
image as a whole, but it is sensitive to local image transformations e.g. caused by noise. Therefore
the following image distortion model (IDM) is proposed [51, 23]. When calculating the distance
between two images x and p, local deformations are allowed, i.e. the ‘best fitting’ pixel in the
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Figure 4.10: 1D comparison of Image Distortion Model and Tangent Model (Scaling)

reference image within a certain neighborhood R;; is regarded instead of computing the squared
error between z;; and p;;. Fig. 4.10 shows a 1D example for the IDM (left) where individual pixel
displacements are independent, in comparison to TD (right), where displacements are coupled,
forming an affine transformation (here scaling). The resulting distance is

I J
dipni (2, 1) =D > min {|wij — ppiryel|* + Cijiryr } (4.50)
o1 o e R

The cost function C' > 0 represents the cost for deforming a pixel x;; in the input image to a pixel
g in the reference image' and is introduced to compensate for the fact that in an unrestricted
distortion model (i.e. with C' = 0) wanted as well as unwanted transformations can be modeled.
With growing neighborhood R the admissible transformations may violate the assumption that
they respect class-membership. In fact, the distortion distance between almost any two images
can be reduced to a value near zero by increasing R, leading to a significant decrease in classification
performance. In the experiments, an appropriate choice of R led to a significant improvement of
radiograph classification, even when the cost function was disregarded. To determine the cost
function C, two methods may be proposed [23]:

e Choose Cjj;v;» empirically, e.g. by using a weighted Euclidean distance between pixels (3, j)
and (i',7') (see Equation (4.53)). This way, small local transformations are preferred to
(most probably unwanted) long-range pixel transformations.

e Learn Cj;;j by using training samples and a maximum likelihood approach. That is, apply
meaningful transformations in training and choose C(i,4', j, j’) using relative frequencies of
possible transformations; the more often a transformation was performed in training, the
lower its cost.

The region size is most commonly taken as a square region R of pixels, where its size is best
described by the ‘radius’ of the square r. For higher flexibility it may be desired to model fractional
region sizes as well as integer sizes, which can be achieved using linear interpolation. These
possibilities are illustrated in Figure 4.11 [95]. Figures 4.12 and 4.13 visualize the effect of the
image distortion model for two pairs of images of digits [95]. In the top rows two images of
different classes are shown, while in the bottom rows one can see two images of the same class. In
the top rows, in terms of Equation (4.50), x is the image of the ‘7’, while y is an image of the ‘5.
The image shown for the different parameter settings is composed of the pixel values best matching
each pixel in the observation image x. In Figure 4.12 one can see that for region radius zero, which
corresponds to FEuclidean distance, the best fitting pixel is exactly the one at the corresponding
pixel position, since no distortion is allowed. With increasing region size, more pixels of the ‘7’ can

1The IDM distance can of course be used exchanging reference and observation in the equations, leading to an
explanation of the reference by the observation, which is usually not wanted.
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Figure 4.11: Examples for integer and fractional values for the region radius in the IDM
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Figure 4.12: Increasing radius of neighborhood at cost 0 (radius from left to right 0.0, 0.2, 0.5, 0.8,
0.9, 1.0, 1.5, 2.0)

be explained by the reference and the image resembles more to the reference. One can also see the
effect of linear interpolation in the images corresponding to fractional region radii. In Figure 4.13
one can see the effect of the cost function C, which restricts the used deformation effectively.

The IDM is a natural approach and the idea can be found in various settings in the literature
(where the following paragraphs state some). Nevertheless it is an effective means to compensate
for small local image variations and the intuitiveness of the model may be seen as an advantage.

The approach can be regarded in relation to the one presented in [47], which also mentions the aim
of extending a linear (eigenspace) method: “View-based recognition methods, such as those using
eigenspace techniques, have been successful for a number of recognition tasks. Such approaches,
however, are somewhat limited in their ability to recognize objects that are partially hidden from
view or occur against cluttered backgrounds.” The authors present a technique based on the
generalized Hausdorff measure applied to binary (edge) images. The classical Hausdorff measure
for two sets P, @ (for binary images the sets of points with value 1) is introduced as

h(P, Q) = maxmin [|p — q] (4.51)
The generalized Hausdorff measure is then defined by replacing the maximum operation by the f-
th quantile, yielding hs(-,-). The authors then define (as the used distance measure) the Hausdorff
fraction, being the largest f for which hy < d, for some fixed neighborhood size d. It can be
computed by dilating @ with a radius of d to Q¢ and then computing the fraction of points in P
for which the corresponding point in Q% exists. “when the dilation is zero, the Hausdorff fraction
is simply a normalized binary correlation.” Now, the correspondence to the IDM can be seen in
the following quotation: “The improvement over binary correlation is to be expected because the
Hausdorff fraction handles small perturbations in the locations of image features (whereas, for
binary correlation, either feature points are directly superimposed or they do not match).” The
IDM can be seen as a generalization of this method to graylevel images. One can regard the IDM
as dilating every pixel in () with a radius r = d, such that each pixel afterwards is assigned a set
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Figure 4.13: Increasing cost factor for Euclidean cost at constant neighborhood size 1.0 (weight
factor from left to right v = 0.0, 1.0, 2.0, 3.0, 4.0)

of grayvalues. Then the basic IDM distance measure is composed of the sum of squared distances
for each pixel in the image P to the closest one in the set of values for the corresponding pixel in
Q.

Another distance measure similar to the IDM distance was used in [92] by the name of “pixel
distance metric”: “For mismatched pixels between the test and training images, it takes into
account the distance to the nearest pixel of the same color” This can be compared to the cost
function C in the IDM, but here only exact matches respectively binary images are considered.

IDM and Gradient Magnitude

There is an interesting connection between the image distortion model and the local gradient mag-
nitude in the image. If one reduces the information about the local region R;; to the gradient
vector (magnitude plus direction), which may be a justified assumption if the image is sufficiently
smooth, one can explicitly solve the minimization of Equation (4.50) over the (continuously mod-
eled) region, given the cost term. Using this model with a weighted Euclidean cost function, the
term pi; ;5 referring to a pixel of the reference in Equation (4.50) is replaced by

o

irgr = pij + Ai %

0
+Aj a—‘,‘, with Ai=d —i, Aj=74 —j (4.52)
J
the partial derivatives being approximated by the local gradient. Furthermore the cost function is
replaced by

Cijirgr = (1" —all* + (15 = jI*) = v(A® + Aj?) (4.53)

Now the size of the used region can be adjusted with the value of v, so for the considerations
unbounded regions can be assumed. The minimization therefore can be found by the following
calculations:

min ||z — parge|I” + Cijirgr }

(i,5")ER;j
_ : O RJUNP .9 .9
= g lles = G + Aige + A5 HIT (AT + A7)
— : L . T 2 2
= min {lles; = (i + AT)| + 7187}

on o

9i’ 0j

_ . _ —AT 2 A 2
Arreng{ll(x 1) pII* + A%}

= min {(@—p)* = 2(x = ) ATp+ [|AIP[Ip]) + 1A%}
€R

[with A = (A;,A)T, p=( )¥', and dropping the indices]
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Ry
= @-wa- )
= (rﬂ—u)2||p”2+Jrv (4.54)

In this setting, usage of the IDM now amounts to multiplication of the local Euclidean distance
with a factor based on the local gradient magnitude and the minimization over the region can be

omitted.

v
Bioregeaa (T, 18) = Y |5 — “”HZW
ij

4.55

0,J
where p;; denotes the local gradient vector. This variation of the IDM amounts to a weighted
Euclidean distance, where large distances are less costly in the proximity of a large gradient, which
seems sensible since in that area a small distortion can lead to a large change in grayvalue. On
the other hand one can view this variation as a variant of the line thickness tangent, where the
thickness is allowed to vary independently in the different parts of the image, while the tangent

requires uniform variation throughout the image.

4.4 Levenshtein-Moore Distance and Warping Models

There is a variety of algorithms for image matching that deform two images to be compared in
order to obtain a good match between them. This warping of images usually is constrained by
costs for large distortions or by requiring a certain continuity of the warp. “Elastically deformable
templates [...] have been shown to model nonnormalised images of characters well [...]. Unfor-
tunately they are also computationally too expensive for normal use.” [43] Deformable models
have been used in a variety of settings, e.g. using deformable splines for digit recognition [16],
applying combined hidden Markov models to continuous writing recognition [6], using physically
motivated mesh deformation for face recognition [70] or using piecewise continuous mappings for
face recognition and other data [30]. One class of these warping approaches is based on allowing
almost any transformation of the plane, but imposing certain cost and restriction terms to local
or global deformation parameters. The globally optimal warp is then determined using dynamic
programming [67, 96]. One such approach will be considered in more detail now.

In 1979, MOORE presented an algorithm for finding the distance between two finite areas using
dynamic programming [72]. In the one-dimensional case the described distance is also known as
Levenshtein-distance or edit-distance. It is defined “as the minimum cost of changing one sequence
into the other by the substitution, deletion, and insertion of elements in either sequence.” [72]
This principle can be applied to two dimensional areas yielding a distance measure based on the
minimum cost of changing one area into the other using the same operation on the pixel level. One
of the advantages of the proposed distance over e.g. Euclidean distance is, that it can be applied
without changes to the matching of images of different size. MOORE applied the algorithm to areas
containing symbolic values (as characters are in a string), and thus images were always regarded
as binarized. A description of the algorithm is best started with the one-dimensional case. Here,
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the distance d(a,b) between two sequences a = a1as...a; and b = b1by...b; is defined recursively
as the minimum of

e the distance between aqas ...a;—1 and biby...b; plus the cost for deletion/insertion of a;
e the distance between ajas ...a; and biby...bj_1 plus the cost for insertion/deletion of b;

e the distance between ajag...a;—1 and biby...bj_1 plus the cost for substitution of a; by b;

More formally:

d(alag...ai,blbg...bj) = min{d(alag...ai_l,blbg...bj)—I—d(ai,e),
d(alag...ai,b1b2...bj_l)er(e,bj),
d(a1a2 e Qi—1, ble N bjfl) -+ d(ah bj)} (456)

and

d(e, €) 0

d(aras...a;,€) = Z d(ay,€)
/=1
J
d(e;biby...bj) = > d(eby) (4.57)

j'=1

with € denoting the empty sequence. This recursion can be solved efficiently using dynamic pro-
gramming in time O(i - j) [72]. Now MOORE proposes a similar algorithm for two dimensional
sequences (i.e. lattices or images). The number of different terms that occur in the minimization
then is 15 (in general 22" — 1, with the number n of dimensions of the lattice as one can verify
by a combinatorial argument). Since the resulting recursion formula is very complex, only a more
informal descriptions is given here (for the recursion formula see [72]). In order to allow a compar-
ison with the one dimensional case, first an informal description of the above recursion is given.
Informally, in each matching step between the sequences a and b (here performed backwards, as

in the recursion) one can

1. discard the last symbol of a
2. discard the last symbol of b

3. match the last symbol of a with the last symbol of b

while regarding the introduced cost in each step. Now for the two dimensional case in each matching
step between the images a and b

ain e a1y by - bir
a=| . - b=+ . (4.58)

ary - agg b1 - bk

one can

1. discard the right column of a

2. discard the right column of b
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3. discard the lower row of a

4. discard the lower row of b

5. discard the right column of a and the lower row of b

6. discard the lower row of a and the right column of b

7. match the right columns of a and b

8. match the lower rows of a and b

9. match the right columns of a and b, discard the lower row of a
10. match the right columns of a and b, discard the lower row of b
11. match the lower rows of a and b, discard the right column of a
12. match the lower rows of a and b, discard the right column of b
13. discard the lower row and the right column of a
14. discard the lower row and the right column of b

15. match the lower rows and the right columns of ¢ and b

where the matching of rows and columns can be performed using the one-dimensional algorithm.
Again, dynamic programming can be applied to calculate the distance without using recursion.

Since the original algorithm was proposed for binarized images, a straightforward extension is to
also take into account images with grayvalues. In that case, one can use the (weighted) squared
difference in grayvalue as cost for a substitution of two pixels. This leads to a new degree of
freedom, because the distance component introduced by an insertion or deletion must be adjusted
in relation to the changed interval for the substitution cost. Other possible extensions to the basic
model include to adjust the cost of insertions or deletions in relation to the grayvalues of the
surrounding pixels, which has a connection to the image distortion model. Possibly, the cost for
insertion and deletion of pixels at the image border could be weighted, such that images presenting
shifted versions of the same object could be matched at lower total cost. Furthermore, in the
cases, where a row and a column of the same image are regarded simultaneously, one could regard
the two sequences as joined and perform matching ‘around the corner’. The arising (non-trivial)
question that remains in this context is, which transformations can be modeled with this approach
and how it is related to other warping models.

4.5 A Generalization

The approaches of tangent distance and image distortion model towards an invariant distance
measure are quite different. Yet, both can be seen from a common point of view, which is the
resulting vector field of pixel displacements due to the modeled transformation. A one dimensional
example for this connection is shown in Figure 4.10 and a different viewpoint shown in Figure 4.14.
The figure shows typical examples for the resulting pixel displacement vector field in the two models.
The difference between the two approaches taken is that in the IDM a free displacement within the
considered region is possible for each pixel (the minimization of the distance is done for each pixel
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Figure 4.14: Transformations in the tangent model and the image distortion model for size 3 x 3
images. Top row: x-shift, y-shift, rotation, scaling in the tangent model. Bottom: distortion
model. Typical examples of resulting pixel displacement vector fields.

independently), while for tangent distance an interdependence between pixel shifts exists and the

minimization is calculated over all possible combinations of allowed transformations.

Trying to relate the approaches of tangent distance and image distortion model (with a connection
to the warping methods) it becomes clear, that one can be expressed in terms of the other. Ex-
pressing the IDM in terms of tangent distance is difficult, when a non-zero cost function is involved
(it requires additional restrictions on the values permitted for the transformation parameters ).
On the other hand generalizing the IDM leads to an expression also covering tangent distance:

de,r(z, p) = g}éi}_l{c(f) + D llwis — pragpll} (4.59)

i,J
where F C (IR x IR)!*7 is a class of functions assigning to each pixel its (interpolated) counterpart
and C' : F — IR=? a cost function for these assignment functions. For the IDM one has

Foom ={f : f(i,4) € Rij}, Ciou(f) = Zcijf(i,j) (4.60)
i

while for the manifold distance of affine transformations C' and F have the following representation:

Fro ={f : faffine}, Cip(f)=0 (4.61)

This general expression is an intuitive representation of a distance being invariant to arbitrary
functions f of some class F and a superset of TD and IDM. Computing (4.59) may be very hard or
impossible with some classes and cost functions, but TD and IDM are two examples with known
solutions. (Strictly speaking, TD only models an approximation of Equation (4.61).) Some ques-
tions arising are e.g. which other cases are interesting in the setting of invariant pattern recognition
and if one can learn the functions efficiently from training examples. For instance, a model that
extends the IDM naturally is to introduce a dependency between the displacements of pixels in
a neighborhood, such that displacements in the same direction are cheaper than displacements
in opposite directions. This leads to more complex minimization problems, which may be still
efficiently solved using dynamic programming, if the number of possible displacements is small.
These are related to the warping approaches described in the previous Section. Note that it is



62 CHAPTER 4. INVARIANT IMAGE OBJECT RECOGNITION

difficult to embed the XYT image warping approach presented in [70] into the model (4.59) as the
implicit XYT cost function depends on the intensity values.



Chapter 5

Theoretical Considerations

“An SEP,” he said, “is something that we can’t see, or don’t see, or
our brain doesn’t let us see, because we think that it’s somebody else’s
problem. That’s what SEP means. Somebody Else’s Problem. The
brain just edits it out, it’s like a blind spot. If you look at it directly
you won’t see it unless you know precisely what it is. Your only hope

[3]

is to catch it by surprise out of the corner of your eye.”

This chapter contains some theoretical considerations regarding the topic of this work. Section 5.1
takes a closer look at invariant distance measures like tangent distance from a probabilistic point
of view [50], while Section 5.2 deals with structured covariance matrices [21] and their relation to
the IDM.

5.1 A Probabilistic View on Tangent Distance

Tangent distance and related approaches are usually seen in the context of distance based classifiers,
as the name ‘tangent distance’ already suggests. In many cases the focus on distances can be related
to the focus on probability densities (which is central to statistical pattern recognition) via the
exponential function:

pu(z) = em3d@n) o —2logp,(z) = d(x, 1) (5.1)

For example Equation (5.1) states the relation between Euclidean distance and a Gaussian distri-
bution with the identity matrix as covariance matrix. This section tries to find a relation between
tangent distance and the according distribution. (See also page 21.)

For related work the following two publications should be mentioned, while others are cited
throughout this chapter. In [64] LAAKSONEN considers a probabilistic view on subspace meth-
ods. Yet the author does not derive the distribution in general, but only the distribution of the
distances from the subspace, which has the form of a gamma distribution. In [68] MEINICKE &
RITTER present a statistical framework for local PCA learning, but do not relate the method to
domain knowledge about class-specific variance in the data.

The approaches can be divided into certain categories, that is if the variation is modeled on the
side of the references respectively on the side of the observation vectors. On the other hand one

63
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may also distinguish between known derivatives of variation and cases where this information is
not available. Each of the following sections deals with one of these possibilities before an attempt
is made to combine the results. In the following “direction of variation” is considered synonymous
to “derivative of variation”, since the derivation with respect to the variation leads to the tangent
vectors as first order approximation, which can be regarded as pointing in the corresponding
direction.

5.1.1 Known Derivatives of Variation in the References

First consider the case where for each reference vector p it is known that it may be subject to certain
(small) variations that do not change the class it belongs to. That is, there is some a priori knowl-
edge about the reference. For example the class a picture of a digit belongs to generally does not
change when a slight affine transformation is applied. This means that variations in the directions
of the tangent vectors p; with respect to the transformations [ = 1,..., L should also represented
by p. Let oy be the amount of variation in direction i, the vector o = (ay,. .., ar)” and consider
a Gaussian distribution of the references with covariance matrix ¥. A first order approximation
of the transformed reference can then be expressed as p + ), ayjy and the corresponding density
function for given o can be written as follows:

p(x‘u7a7z) = N($|N+Zl O‘lﬂhz

1 1 o
————— X + o —x) X + ap — ) 5.2
s b (-~ 5+ 32, o ot o =) 62

Now assuming a probability density function p(«) for « modeling the variability leads to the
following expression for p(z|u) = p(z|u, X) (for some parameter X, considered constant here):

paln) = [ pl,alu) do
/ p(alu) p(zla, 1) do
/ p(e) plzlia) da

[with « independent of pu and p, = p + Zl oy ]

max {p(@)p(alpa)} (5:3)
[using maximum approximation)]

= max {N(a]0,7*1) N(z|pa, 2) }

[assuming independent Gaussian distribution of the «; with

Q

variance 72 and mean 0]

1 1 2)
= maxq ———exp | —— aj | -
" {WL ( 7 2
;ex < 1,u—|—z aypy —x)Te! '“+Z alul—x> (5.4)
(2m) P15

The use of maximum approximation in Equation (5.3) is not essential. The same results (except for
some constant terms) can be obtained without its application, but the calculations are somewhat
more complex. They are included in the Appendix A.3.
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The assumption of a Gaussian distribution of the «; can be justified by the central limit theorem
as presented in [64, p. 62ff].

Expression (5.4) is maximized when the (double) negative logarithm is minimized, which can now
be interpreted as distance between x and p. This shows the possibility of deriving the invariant
distance measure from this probabilistic interpretation of variability. (Constant terms have been
dropped as they are of no influence in the maximization.)

d(z,p) = —2logp(z|n)
~ mln{ Zal M+Z Oélul—xTE “+Z alul—x}
= mln{ Z a?+ (u—2)T Y p fx)+(ufx)TZ*1(Zl Qi)
+(, ) TS = )+ (3, ) TN ) } (5.5)

Assuming orthogonality of the 1, with respect to X1, that is uf X1y = 0 for [ # I’ (which can be
achieved without altering the spanned subspace usmg for example a singular value decomposition),
it follows that (3, ayp) TS (Y, cu) = >, @ £~y Furthermore the third and fourth term
of the above sum are identical and the second term is independent of . Therefore the expression
reduces to

d(a,p) = (n—2)"S  (n—2)
+m£n{zlal2 <7 +ufe~ m) p—z) '8~ (Z oq,ul)}
= (n—2)'s N (u—x)
2
1 — TE _)Ty-1,)2
+min Z( +Mz xT lﬂl _Z ((#1 Jf)T 1#1)
a 1\ 2 2'*‘/11Z i ! »72"_:“[271“
= (n—2)'s N (u—2)
2
: 1 p—x)" S ((p—2)"2 " u)?
+ min +ul Sy a + -
ind 3 (L ( ) oy
:01

((p—x)"8 " y)?
=S

= (o)’ () =Y (5.6)
At the boundaries of the considered range for v which is [0; 00) this yields Mahalanobis distance for
v — 0 and tangent distance with tangents p; for v — oco. This is not a necessary condition for TD,
but e.g. in the domain of OCR experiments showed, that no gain could be obtained by restricting
the value of v (Compare page 132). The authors of [87] call the inverse of v “spring constant”

based on a model with physical intuition. They describe the minimization process as similar to the
energy minimization taking place in a physical system with movable points and springs along the
ranges between the projection point and the observation point and between the projection point
and the reference point. They also state that “Contrary to intuition, there is no danger of sliding
too far in high dimensional space, because tangent vectors are always roughly orthogonal and they
[i.e. the points in the tangent space| could only slide far if they were parallel.” This means that

in high dimensional spaces the minimizing value for « is usually small.

1This term is a minimization over a sum of quadratic terms of the form ... - (a +...)2, which is always zero.
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Using the relation
eT (AT b = 2T A e+ 2Tob e = 2T A7 e + (b 2)? (5.7)

(5.6) can be rewritten as

Ts—1IN\T¢(, Ty —1
dog)  ~ ey = 3, LR 69

(/2T (pf %)
pf S

IENCEDHORED )

*

This modification in the distance can be regarded as assuming ‘infinite’ variance in the directions
of the py, since the inverse of the above matrix (x) can be interpreted as covariance matrix. This
is proven by showing that the product of the following matrices equals the identity matrix:

(o ) (i)

l,ul St

T Ty —1 T

(uf 2T (uf271) S1 M
I—\ ) PO ol B
Z Tz 1/“ + /{Zl /-lsz_l,Ul

=0 for 12l
/—/ﬁ
(2! ( (2T e
_)\HZ Zl/ TE 1 . 21:2 1'U'l/
- E_l T E_l T Tz—l
oAy T oy Ry P e g
Uy Xt by X ! (g 2~ )

S

The latter becomes the identity matrix I if \— k+ Ak =0 or Kk = ﬁ Thus, as \ approaches 1
as in TD, k goes to infinity, so that one can write (being aware of the fact that the inverse does
not exist in RP*P):

-1

T Ts—W\T(,Ty—1
. K _ -1 (g 270 (g 277)
o (23 ) = (57 -2 M 1)

and one can write (again only for notational convenience, as ¥/ does not exist)

' - P pup

p(x|p) = N(z|p,X")  with X' = Kh_{go (Z + HZZ NlTE_llm> (5.12)
As XA = 1 is the setting for tangent distance Equation (5.12) shows that tangent distance is the
limiting case of a Gaussian distribution with variance approaching infinity (x — o0) in the direction
of the tangents. That is the distribution can be considered as a degenerate case of the normal
distribution. Alternatively, it can be regarded as a normal distribution in the reduced vector space
that results from projection along the directions of the gy, that is in the vector space dual to
the one spanned by the p;. Such a model is generally called a linear model, which brings about
some normalization problems for the case where v — oo. HINTON et al. state that such a model,
e.g. resulting from a PCA, “is not properly normalizable”, yet very useful, and refer to factor
analysis as a resort [43].
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The problem with normalization can be circumvented by either looking at the distribution in the
space originating from projection along the subspace or by viewing the dimensions of the subspace
as equipped with codebook exponents approaching zero (for an explanation of codebook exponents
see [75]). Another approach is to “use a convex combination of the orthogonal distance [i.e. TD]
and the point-to-point centroid distance [i.e. the distance in the spanned subspace|, whereby the
resulting individual level surfaces are hyperellipsoids and hence of finite extent” [68]. Yet another
method, closely related to the one last mentioned, is to model not only the distance from feature
space (DFFS) which is equivalent to TD, but also the distance in feature space (DIFS), which is
the orthogonal residual [70].

The method described here theoretically is well known for practical applications, for example in
[71] it is said that “eigenvector decomposition has been shown to be an effective tool for solving
problems which use high-dimensional representations of phenomena which are intrinsically low-
dimensional.” and the authors describe their method by the following: “Our learning method
estimates the complete probability distribution of the object’s appearance using an eigenvector
decomposition of the image space. The desired target density is decomposed into two components:
the density in the principal subspace (containing the traditionally-defined principal components)
and its orthogonal complement (which is usually discarded in standard PCA).” “The reconstruction
error (or residual) of the eigenspace decomposition [...] is an effective indicator of similarity.” [71]

For the special case of ¥ = I the authors of [37] derived a seemingly similar result in the context of
tangent subspace estimation. They define a projection operator onto the tangent subspace using
the tangent vectors and their norm, then describe the usage of a metric defined by a positive
semi-definite matrix consisting of the projection operator subtracted from the identity matrix.

5.1.2 Estimating Derivatives of Variation in the References

In some cases there may not exist a-priori information about the directions of variation of the data
to be modeled, but it is known that there exists class specific variability in the data. That is, there
is knowledge about the existence of variability in some classes, but one is not aware of the kind of
variability. In this case the goal is to estimate the derivatives of variation for each class in order
to be able to use the methods described in the previous section.

Given data x1, ..., xy, areference y and a covariance matrix > one can apply a maximum likelihood
(ML) approach to estimate the directions p;, assuming knowledge of the number of dimensions L
to be sought for. Maximizing the likelihood

[Tr@aln) (5.13)

is equivalent to minimizing the (double) negative log-likelihood (constant terms have been dropped)

) N e sy S () TS )
§ﬁ<mm—§;u DTS (= ) %j T, (5.14)

This in turn is equivalent to the maximization with respect to the y; of
ZZ *xn ) TS )? _ ZZ pi S = ) (p— 20) TS
e YTl l Sz

Iy-1gy-t
-y 19
2"’#[2 i




68 CHAPTER 5. THEORETICAL CONSIDERATIONS

with S =3 (u—2»)(—,)T being the sample covariance matrix of the data. This is maximized
when the vectors (E_%)T,ul correspond to the L eigenvectors with the largest eigenvalues of the
matrix (Z_%)TSE_%, its principal components.? For a proof one only needs to consider the

constraint that the vectors (Z*%)T

iy are orthonormalized and the problem is similar to finding
the principal components for a given covariance matrix, leading to an eigenvalue equation (see

e.g. [65, p. 297]).

For example, assuming ¥ = o2 (as for example in a nearest neighbor setting with Euclidean
distance) this implies using the directions of largest variance of the data. In a more general case
one might consider using the global covariance matrix for ¥ and the class specific covariance matrix
for S. This is equivalent to performing a global whitening transformation for a transformation of
parameter space and then employing the L eigenvectors with the largest eigenvalues of the class
specific empirical covariance matrix as tangent vectors. Results for this method are presented in
Chapter 7. These considerations lead to algorithms similar to those presented in [38] and [68].

In this maximum likelihood setting one obtains no satisfactory solution for the case ¥ = S (because
S is already the estimate for ¥ resulting in maximum likelihood). In this case the expression to
be maximized reduces to

Z M (5.16)
1 + Tz—l :
T 2 T H M

and for v — oo the term is a constant and therefore not helpful for finding the ‘best’ y;. For other
values of v a further transformation of the expression to

> ! ! (5.17)
R LR R '

shows that the only information obtained is that the term gl X!z should be maximized, which
only states that the length of the vectors p; should grow infinitely but does not include information
about the direction. If unit (or constant) lengths are assumed, one obtains the directions of smallest
variance as directions for the tangent vectors, because the product contains X ~!. This may not
be very helpful for practical applications, but it makes sense as a result of maximum likelihood
considerations, because it minimizes the reconstruction error, that is, most information (in the
meaning of variance) is retained.

The usage of the (local) principal components as directions of increased variance has been men-
tioned in the context of (local) subspace classifiers before, but it is usually not derived from domain
knowledge. For example in [68] the largest principal components are preserved (although not in-
creased, as in the approach stated here) while other directions are assumed to be directions resulting
from noise, but no theoretical justification for that approach is given. In [44] a mixture of (local)
linear models is regarded, where the directions are estimated like in PCA, but no justification for
this approach is given.

Note that if PCA is used for feature reduction the approach is usually contrary to the one proposed
here, since the directions of largest variance are preserved. In this context one must be careful to
distinguish between class specific principal components and global principal components.

2Here %3 is defined as the matrix for which 27%2(27%)T = I holds, which exists, if 3 is a non singular
covariance matrix. This is also the transformation matrix of the whitening transformation (see [32, pp. 28ff] and
page 27).
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Local Estimation of the Derivatives of Variation

The following considerations deal with estimation of the directions of variation for a certain vector
x,, of the training set locally. One method accomplishing this is to find a subset X, of the training
data belonging to the same class and then use the set of vectors {z’ — x, |2’ € X,} (or an
orthonormalized equivalent set that spans the same subspace) as a set of tangents for that pattern.
The set X,, can be chosen in different ways, two straightforward solutions being (a) all patterns
within a certain distance, but this has the drawback that the cardinality of X, is not fixed. Or
(b) one fixes the cardinality | X,,| = L and uses the L closest vectors.

This method is known as local subspace classifier (LSC)[63], which “fills the gap between the
subspace and prototype principles of classification.”® It can be extended using the previously
described ideas employing the eigenvectors with largest eigenvalues of the matrix

Eni= Y (@ —a)(@ — )" (5.18)

' e€X,

If the first |X,,| eigenvectors are used (and |X,| < rankZ,) this approach is identical to the
first one. On the other hand this approach is more flexible (which may be an advantage or a
disadvantage). For more flexibility one might introduce coefficients for the outer products in the
sum, for example depending on the distance of 2’ to x,,. Note that Z,, can be regarded as a local
covariance matrix, if x,, is considered the mean of this local distribution.

Extending the approach to discriminative training can be done for example by using a local LDA
instead of the PCA. This path has been presented in [39]. The authors state there that their
approach of a “discriminant adaptive nearest neighbor metric” (DANN) based on a local LDA,
could be generalized using invariant distance measures like tangent distance.

In [68] this idea has been pursued for a mixture of subspace-constrained Gaussians. The authors
state that “To overcome the limitations of a globally linear model, local PCA’s can provide an
effective means to deal with non-linear structures in multivariate data.” They propose not to fix
the local dimension L, but estimate it locally according to a global resolution parameter.

5.1.3 Known Derivatives of Variation in the Observation
during Recognition

As well as the reference vector u can be subject to transformations that do not affect class-
membership, this can be the case for the observation vectors z. Similar to the first case one can
now consider for a given x all variations z, = x + ), ayx; with the same notational conventions
as in Section 5.1.1. The corresponding density function for given a considering an underlying
Gaussian distribution can then be written as

p(zlp,a,X) = N(za|p,X)

L 1 Ty —1
W exp (-2(M —(r+ Zz axy)) X (p— (x4 Zz alxl)))(5.19)

and with the same considerations as before

34In the LSC process, the nearest prototypes to the input vector in all the classes are sought. A local subspace
— or more precisely a linear manifold — is then spanned by these prototype vectors in each class. The classification
is based on the minimum distance from the input vector to these subspaces.” [63]
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p(aly) = / p(z, ) do
/ p(es) plela, ) da

[ p(@) plzaln) do
~ maxe {N(a|0,7°]) N(za|p, X)} (5.20)

Since the only difference in the calculations is the replacement of the term ‘+ ), ayp’ by
‘—Zl apx;’, one can perform exactly the same calculations, substituting p; with —x; and one
obtains (as the negation cancels out in all places)

(p—x)"2" " ay)?

(,y% + 2l S tay)

(z/ 2D (/57
7% + 281y

da,p) ~ (u-2)"S (u—2)-)

= (w-o)7E" =)

) — ) (5.21)

The resulting form of the distribution cannot be expressed as a (degenerate) Gaussian here as the
matrix depends on the value of x. It seems reasonable, that the problems with normalization can
be regarded in the same way as before, with projection not linear, but along a curve in pattern
space. Yet, this insight may not be helpful for practical purposes, because the curve space and the
manifold resulting from projection along it are possibly very difficult to handle.

5.1.4 Known Derivatives of Variation in the Observation
during Training

One can also look at the a-priori knowledge about the data from another point of view, namely
during estimation of parameters for a distribution, for example when training a Gaussian (mixture)
density for recognition. In that case, one might be interested in using the additional knowledge
only during the training respectively the estimation procedure. It is not modeled in the distribution
then, but rather used for a more reliable estimation of parameters.

Consider a Gaussian distribution (x|, 3) with parameters 1 and ¥ to be estimated and training
data x1,...,zy € RP. Furthermore, one has knowledge about the variability of the data such
that for each x,, the tangents x,1,...,T,r € RP are known and thus for a vector a € IR” one
obtains as before zpq = xn + >, ;. If we introduce a matrix T,, € RP*E which consists of
the L tangent vectors this can be written as x,, = x, + Tha for ease of notation. One can now
modify the maximum likelihood estimates for the parameters

= Y, S= 5 Y we ) (522)

by distributing the weight 1 of each training vector z,, over “infinitely many” variations x,, with
weight p(a), here p(a) = N («|0,3,).

This has no effect on the new means pp:

1
I /Nzn:p(a)xna da
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= %Z/p(a)(xn +Tha) da

- %Z/p(a)xn da+/p(a)Tna da (5.23)
_ %an — (5.24)

where in the last step it was used that x, and T,, are independent of « and the expected value of
« is zero, which implies that the expected value of the linear function T,,« is also zero (and the
expected value of z,, is x,). Thus, the second term in (5.23) vanishes.

Using similar calculations one can show that on the other hand the new covariance matrix X
changes:

Xy = / %p(a) zn:(xna - U)(xnoz - /J)T do
- % /p(o‘) > (@n + Toa — p) (@ + Thor — p)" da
= % ; /P(a) [(@n — ) (@0 — )T + (20 — ) (Tra) "
H(Ta) (2 — )T + (Tra) (Tra)T] da

N-Z+ /p(a) Z(TnaaTTg) da

n

N-%+ ;Tn (/p(a)aaT da) TT

1 T
= S+ ;TnzaTn (5.25)

1
N

1
N

If independence and equal variance of the components of « is assumed, that is ¥, = 021, this can
be rewritten as

1
Sr=%+02) ~ >l (5.26)
l n

which resembles equation (5.12) with the u; replaced by an average of the z,;. But the two
expressions are not exactly of the same structure, because the average is taken over the outer
product of the vectors and not the outer product of the average is used, which is an important
difference.

After these calculations had been carried out, two publications came to my attention, in which
a similar version of (5.25) had been published: A result for support vector machines had been
presented in [81], where the resulting matrix had been called tangent covariance matriz and almost
the same approach as presented here, had lead HASTIE & SIMARD to their result in [37], but they
did not consider it in the general setting. The latter publication reports no improvements in
classification accuracy, though, which is contrary to the findings of the image recognition group at
the Chair of Computer Science VI, who could improve results for Gaussian mixture densities using
this variance description.

The estimation of parameters changes in a fundamental way, if it is assumed that tangent distance
will also be used during recognition. This has consequences for the references as well as the
covariance matrix. As HASTIE et al. pointed out in [38] it is possible to compute the references
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as models which “minimize the average tangent distance from a subset of the training images”.
In the experiments carried out for this work these models did not lead to a better recognition
performance (compare Chapter 7).

On the other hand if tangent distance is used for the observation vectors and one applies maximum
likelihood estimation for ¥ the result is that the variance in the direction of the x,; is reduced.
This is due to the fact that this variance is already accounted for by the tangent vectors, that is
the variance to be explained diminishes in those directions. It is not clear whether this should be
seen as a positive or as a negative effect. Some more considerations with respect to this topic are
presented in Chapter 7.

If the resulting probabilistic models are interpreted as generative models for images, the obtained
results are similar to those of HINTON et al. [44], who infer them from a variant of the neural net
inspired tangent prop algorithm [87].

5.1.5 Estimating Derivatives of Variation in the Observation

If no information about the derivatives of transformation is available for the observation vectors,
they may be estimated from patterns of the same class, which are close to the regarded one. This
can be done in the same way as described in Section 5.1.2 for the training patterns, but the method
may not be useful for the recognition process, because these directions need to be calculated once
for each class that is hypothesized. Furthermore this method cannot be used in a nearest neighbor
classifier, since this leads to zero distance for all classes, if used in the straightforward manner. This
can be explained by the following argument. If the closest references to the observation are taken
into account to calculate the directions of variation, these vectors point exactly towards the used
references. Then employing these directions as tangent vectors implies zero distance component
for the direction and thus zero overall distance since it is the only component.

5.1.6 Combining the Approaches

It is possible to combine the different approaches presented, e.g. combining (5.9) and (5.21) yields
double-sided TD. This may be combined with (5.26) giving

2L Ts=1\T (,Ty~1
dap) = (u— )T (le—Z( (e ) sy )>(u—w) (5:27)

Ty—1
= uj Lo ug

With  {uy,...ugr} being a set of vectors spanning the same subspace as the set
{x1,...21,1,... pr} with the condition ulTZ;lul/ = 0 for | # I'. Since the z; and the y; play
essentially the same role here, and this is in turn the same as for the differences 2’ — z,, from the
previous Section (Equation (5.18)), one might construct an even more general case, in which the
first principal components of the matrix

> Bl —aall) - (@ —an)(@ —2)T Y P wpny + Bewiwhy + Papupi  (5.28)

z'eU(xy) 1 n

are used as tangent vectors for the calculation of the distance d(x,,u). Different settings of the
coefficients 1 (+), B2, B3, B4 allow to reproduce each special case considered before, thus arriving at

a valid generalization.
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5.2 Structured Covariance Matrices

Tangent distance leads to a certain structure in the covariance matrix and its inverse. This section
deals with this and other approaches, especially those based on pixel neighborhoods, that also
result in a typical structure of the (inverse) covariance matrix.

As the previous Section showed, the tangent distance for tangents on the side of the references can
be computed using (an approximation of) the structured covariance matrix X’ (5.12):

papf
P
2 = lim (2 +tEY MITE_1N1> (5.29)
where ¥ is the empirical covariance matrix of the data. The structure here consists of directions
with infinite variance, although the matrix ¥’ cannot be used explicitly (as it does not exist for
Kk — 00), yet calculating single-sided tangent distance is equivalent to using %'.

The tangent structure is inherently linked with a structure in the inverse covariance matrix (which
actually appeared first in the considerations of the probabilistic description of tangent distance).
This is given by Equation (5.11) and consists of a zero distance component in the directions of the
tangent vectors, caused by the term subtracted from ¥ ~'. The additive structure in the covariance
matrix is thus reflected in a negative structure in the inverse covariance matrix.

Similar considerations about influences on the covariance structure are of course possible for double
sided tangent distance or the local subspace classifier, which is a special case of single sided tangent
distance. HINTON et al. [44] consider this in the context of local PCA and describe “PCA as a
way of fiercely constraining a full covariance Gaussian but nevertheless leaving it free to model
important correlations.” And in [43] one finds: “Note that FA [Factor Analysis] is just a particular
way of limiting the number of parameters that define the covariance matrix used to model data.”

5.2.1 Structures based on Pixel Neighborhoods

It is interesting to see that structures in covariance matrices are also used for other reasons, espe-
cially parameter reduction during model estimation. One drawback using Bayesian classifiers based
on Gaussian mixture densities or kernel densities is the fact that the number of model parameters
for such a classifier is extremely high, requiring a very large amount of training data (which is
not always available) for reliable parameter estimation. A common approach to overcome this
difficulty is the use of diagonal instead of full covariance matrices, i.e. the use of variance vectors.
Note that the use of a diagonal covariance matrix can be interpreted as a very simple approach to
structuring covariance matrices, where a rather harsh approximation of a full covariance matrix is
used in order to reduce the number of free model parameters.

Special structures in covariance matrices for image distributions can be obtained by assuming that
the grayvalue of a certain pixel only depends on the grayvalues of the neighboring pixels. This
is an assumption quite frequently found in image analysis and looking at empirical covariance
matrices, this seems to be the case in many datasets. For example in [81] the authors describe for
their experiments in the context of support vector machines “Local correlations in the images were
assumed to be more reliable than long-range correlations.”

Using full covariance matrices for object recognition implies that any two pixels within an image
are correlated. On the other hand, using diagonal covariance matrices, it is assumed that there is
no correlation between different pixels at all. Both such approaches are somewhat extreme: the
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Figure 5.1: Neighborhoods N; (1) and Nj (1,2) (left). Resulting band structure of the inverse
covariance matrix X! for N; and 4 x 4 pixels sized images (right). Black pixels represent non-zero
entries in ¥ 1.

first suffers from a large amount of parameters, whereas the latter may be an unrealistic model in
some applications. As a compromise, one could use a full covariance matrix with the restriction
that the grayvalue of a given pixel only depends on its neighbors. Thus, the number of non-zero

entries in the respective inverse covariance matrix can be significantly reduced.

Regarding the neighborhoods N7 and N> as shown in Figure 5.1 and assuming that the grayvalue
of a pixel x;; only depends on its neighboring pixels, the respective inverse covariance matrix !
has a band structure, where the number of bands increases as the regarded neighborhood grows
(four bands for Ny, eight for N3). This can be shown using Markov random field theory. [10] One
can show that a certain neighborhood structure in a Markov random field (MRF) implies that all
elements of the inverse covariance matrix, which pertain to pixels not belonging to a clique, i.e. not
mutual neighbors, are zero. This follows from the equivalence between MRF and Gibbs random
fields (GRF) (Hammersley-Clifford theorem): Given a neighborhood system N, a random field is
a MRF if and only if its joint distribution is a Gibbs distribution with respect to the cliques of
N [65, pp. 180ff]. Informally stated, the probability density function for the realization of pixels
that are not mutual neighbors are stochastically independent. Therefore, the contribution of the
second order term for such pixels to the value of the joint probability density function is zero.

Note that the above correspondence is only true, if only cliques of size two are allowed. The number
of dependencies of pixels, that is the clique size, finds a direct match in the dimensionality of the
covariance description. For clique sizes of maximum one (no dependencies between neighboring
pixels, empty neighborhoods) a first order variance vector is sufficient, for cliques with a maximum
of two members one needs elements of the second order covariance matrix. This consideration

could be continued for larger clique sizes leading to higher order covariance structures as models.

Thus, any entry of ¥~! that does not lie on the diagonal or the bands is zero. Note that some
entries on the first band are zero, too (cp. Figure 5.1). This is due to the fact that wrap-around is
not considered here, e.g. a pixel at the left border of an image is not a neighbor of the corresponding
pixel at the right border.

Considering this, a maximum-likelihood estimation of ¥ (i.e. maximization of [[, p(x,) with re-
spect to X, given the training observations x,, n = 1,..., N) yields the interesting result, that one
can only give estimations for those entries in ¥ that lie on the diagonal or the bands. Thus, one
knows each entry in ¥ that is not known in ¥~! (where one has knowledge about the occurrences
of zeros) and vice versa. Hence, an estimation for ¥ ! (under the constraint that only neighboring
pixel depend on each other) can be found by solving

y.xt=1 (5.30)

with known elements in both matrices. This is a (very large) bilinear equation system (that is, the
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highest order terms are of the form const- xy where x and y are unknowns) with the same number
of unknowns as equations. This implies that in the general case there is a unique solution. It is not
a trivial task to find that solution, though, when the system consists of n(n +1)/2 equations (with
the same number of unknowns), with n being the number of pixels in the image. For example for
the USPS database that means a bilinear system of 32896 equations needs to be solved.

5.2.2 Relation to Tangent Distance

At the beginning of this Section one relationship between structures in the covariance matrix and
tangent distance has already been mentioned. Now it is interesting to find the connection be-
tween the modification in the covariance structure introduced by pixel neighborhoods and tangent
distance respectively invariance. This can be traced by the following considerations.

Consider an existing neighborhood structure N with a set C of cliques of the form C' = {c1,¢o}
with pixels ¢1,co being mutual neighbors. Since the maximum clique size is two, only pairs are
considered here with cliques of size one denoted by ¢; = ¢5. Consider furthermore that on particular
data set this structure led to an estimation of the inverse covariance matrix £ ~! with

y»ol=0, for (i,5)¢C (5.31)

)

and possibly nonzero entries in all other positions. Moreover, the estimated covariance matrix X
has the known entries

Eij = Sm‘, for (Z,]) eC (532)
and unknown entries elsewhere.

Now one can have a look at the changes that occur, when a clique {c1, ¢}, ¢1 # co is introduced
into C. The changes introduced in ¥ will occur mainly at the position (¢, ¢z) and (ca, ¢1), where
the previous entry is replaced by S¢,,, yielding a new estimate ¥'. If the other changes introduced
are neglected (they are actually zero if the introduced clique is the last possible one) one can write
for the difference AY = ¥/ — X

I A for {i,j} # {c1,ca}
AZZ] - { s 5 for {Za]} = {01,62} (533)

with s > 0. Now AX has the following eigendecomposition:
AY = sviv] — svpvd (5.34)

with the two vectors v; and vy given by vie, = vie, = 1/\/§ and vg., = —V2e, = 1/\/5 and all
other vector components equal to zero. Using the interpretation of Equation (5.11) this can be
viewed as a tangent with weight x = s instead of kK = co (or A = 1/(1 + s) instead of A = 1) in
direction of vy, which represents exactly the introduced clique and another tangent with negative
weight k£ < 0 in direction of vg, which represents a divergent behavior of the two clique pixels.

Informally this can be described as follows: Adding the additional clique {c1,c2} to the neigh-
borhood structure has the effect, that deviations of the pixel values from the reference values at
positions ¢; and ¢ in the same direction (e.g. greater grayvalues than the references for both pix-
els) result in smaller distance than before, while deviations in opposite directions result in increased
distance. This can be interpreted as increased invariance of the distance measure with respect to
locally comsistent changes in greyvalue.
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To conclude this section the connection to the (discrete )cosine transformation (DCT) is discussed.
The DCT diagonalizes a covariance matrix, i.e. the covariance matrix is diagonal in the transformed
pattern space, if the requirement is met, that the covariance matrix has a band structure similar to
a Toeplitz matrix [74]. This is the case, if the covariance between two pixel position depends only
on their relative (wrap-around) distance (in the feature vector, which usually resembles the image
structure except for the image borders). The restriction imposed by the structuring described in
this section is of a different nature. Here the assumption is, that the Gibbs potential of the grayvalue
of a pixel only depends on neighboring pixels, but this connection may be different throughout
the image. This can lead to a different structure, although a certain connection between the two
approaches is, that the covariance of close pixels is usually greater than that of pixels far from each
other in the image.



Chapter 6

Databases and State of the Art

He would never have discovered it if he hadn’t been busy engineer-
ing a mental block himself. He came across a whole slew of smooth
and plausible denial procedures and diversionary subroutines exactly
where he had been planning to install his own. The computer denied
all knowledge of them, of course, then blankly refused to accept that
there was anything even to deny knowledge of, and was generally so
convincing that even Ford almost found himself thinking he must have

[5]

made a mistake.

This chapter contains an overview of the recognition problems considered for this work. First,
the data which is to be classified is described and secondly the results obtained by other research
groups are presented.

6.1 Databases

During the experiments for this work a variety of databases were used. In the following, these
databases are presented in order to give an idea of the classification tasks the algorithms were
designed for. The first two databases contain images of handwritten digits, the third one consists
of digitized radiographs of the human body.

Digit recognition (a subproblem to optical character recognition, OCR) has at the same time a
great practical importance — one can think of automatic processing of mail envelopes or bank trans-
fers — and serves as an evaluation task since the problem is well defined and common databases are
in widespread use. “A digitized handwritten numeral can be represented as a binary or grayscale
image. An important pattern recognition task that has received much attention lately is to auto-
matically determine the digit, given the image.” [37]

In the medical context the field of image recognition is of some importance because in medical
systems a broad variety of images is present, such as radiographs, ultrasound images, computer
tomography images and so on.

7
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Figure 6.1: Some examples images taken from the USPS test set

6.1.1 US Postal Service Handwritten Digit Database

The well known United States Postal Service Handwritten Digit Database (USPS) consists of hand-
written, isolated and normalized images of handwritten digits coming from US mail envelopes.
The images are quantized to 256 grayscales' and their size is 16x16 pixels (pixel = picture el-
ement). The database contains a separate training and test set, where the training set includes
7291 images and the test set consists of 2007 samples. The database is available via ftp through
ftp://ftp.kyb.tuebingen.mpg.de/pub/bs/data.

Figure 6.1 shows some example images for each of the ten classes taken from the USPS corpus.
Despite of the normalization there is still a large variability in the data, which the classifier needs to
take into account. Furthermore one can see artifacts due to the fact that the images are segmented
from an area containing more writing, for example in the image of an ‘8’ in the last row.

The USPS test set is known as a hard recognition task which can be inferred from the human error
rate on the data of 2.5% measured by SIMARD et al. [89]. Figure 7.1 shows the errors together
with the correct class label which the best classifier developed during the experiments for this work
makes. From that figure the number given for human performance seems comprehensible.

One disadvantage of the corpus is, that there exists no development test set, which leads to effects
known as ‘training on the testing data’ for each of the research groups performing experiments.
This refers to effects of evaluating the method over and over on the same data until the best
performance for the method seems to be reached. Ideally a development test set would be used
to determine the best parameters for the classifiers and the results would be obtained from one
run on the test set itself. Nevertheless a comparison of ‘best performing’ algorithms may lead
to valid conclusions. In [37] the authors compare the performance of different algorithms on the
USPS database and comment the subject with the following: “Although there is an official test set
of data to be used to evaluate different methods, it can be overused. For example, a group may
attempt tens or hundreds of different configurations, but only report the results of the best. These
caveats hold for any technique with tunable parameters, but are especially pertinent for neural
networks which have many.”

On the other hand a definite advantage of the USPS task is the availability of many recognition
results reported by international research groups, allowing a meaningful comparison of results.
Some results for different algorithms are listed in Section 6.2 in Table 6.1.

1For the experiments the 256 levels were projected linearly into the range [0.0;2.0].
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Figure 6.2: Example images taken from the NIST database

6.1.2 NIST Handwritten Digit Database

The (modified?) National Institute of Standards and Technology handwritten digit database is
very similar to the USPS database in its structure. The main differences are that the images are
not normalized and that the corpus is much larger. It contains 60000 images in the training set
and 10000 patterns in the test set of size 20x20 pixels with 256 graylevels. It is available from
the www through http://www.research.att.com/ “yann/ocr/mnist/. Some examples from the
NIST corpus are shown in Figure 6.2, which illustrate the effects of normalization if compared to
Figure 6.1.

The task is generally considered easier than the USPS task for two reasons. On the one hand the
human error rate is only 0.2%, although it has not been determined for the whole test set [89].
Secondly the (almost ten times) larger training set allows machine learning algorithms to generalize
better. With respect to the connection between training set size and classification performance it
is said in [92] that increasing the training set size by a factor of ten about cuts the error rate by
half. Looking at Table 6.1 this may also be true for the USPS and NIST databases.

The same arguments for the USPS concerning the absence of a development test set and the
availability of research results from other groups also hold true for the NIST database.

6.1.3 IRMA Radiograph Image Database

The IRMA radiograph database contains medical image data from the IRMA project (Image Re-
trieval in Medical Applications [66]) of the RWTH Aachen, which belong to the six classes abdomen,
breast, chest, limbs, skull and spine. The images come from daily routine, are anonymized and
secondary digital, that is they have been scanned from conventional film-based radiographs. All
images were scanned using 256 gray levels, with the image sizes ranging from about 200 x 200
pixels (e.g. a radiograph of a single finger) to 2000 x 2000 pixels (e.g. a chest radiograph). The
anonymized images reflect the distribution of images in the Department of Diagnostic Radiology
and were labelled with the six classes by an expert. The corpus consists of 110 abdomen, 706
limbs, 103 breast, 110 skull, 410 chest and 178 spine radiographs, summing up to a total of 1617
images. Furthermore, a smaller set of 332 images that are not labelled exists for testing purposes.
Figure 6.3 shows example images from the database which clearly show the different classes. The
database contains a wide variation of images, which is shown in Figure 6.4 for the class ‘chest’,

2There also exists a larger database of which this one is a subset. Therefore this database is sometimes also
referenced as MNIST database.
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Figure 6.3: Example radiographs taken from the IRMA database, scaled to a common, square size.
Left to right: abdomen, limbs, breast, skull, chest and spine.

giving an idea of the high variability. The original images are of varying sizes up to about 2000
pixels in width but were scaled to a common size of 32 x 32 for classification purposes. The rescaling
did not produce significant decrease in recognition rate [23].

Although each image is originally labelled with an 8-digit IRMA category code, in the categoriza-
tion step one concentrates on the six anatomic regions. Nevertheless, radiograph classification is
a hard problem, since on the one hand, the qualities of radiographs vary considerably and there
is a great within-category variance (as caused by different doses of X-rays, varying orientations,
images with and without pathologies, changing scribor position etc.). On the other hand, there is
a strong visual similarity between many images of the classes abdomen and spine (compare Figure
6.3).

Because there are only 1617 images available, a leaving-one-out approach was adopted for cross
validation, thus the database served as training and development test set, classifying each image
while using the remaining 1616 as training set. After parameter adjustment the classifier was
evaluated on a new set of 332 additional radiographs. So the final result does not suffer from
training on the testing data, although most results given were obtained on the first set used for
evaluation of different approaches and parameter settings.

One drawback of this database is that so far only few results for comparison exist. A few results
from other members of the IRMA research group exist as well as a 1-NN baseline result and some

results from experiments based on cooccurrence matrices.

To describe the context in which this classification task belongs, in the following a short description
of the IRMA system is given, following [23].

An Overview of the IRMA system

From the medical point of view there exist three major applications for automated content based
image retrieval [66]:

(1) automatic retrieval of relevant images for follow-up studies within a picture archiving system,
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Figure 6.4: Variations within the class ‘chest’

(2) searching for representative images of known diseases and

(3) scientific and educational studies on X-ray patterns.

In contrast to common approaches to image retrieval, the IRMA concept is based on a strict logical
and algorithmic separation of the following steps to enable complex image content understanding:

e image-categorization (based on global features)
e image-registration (in geometry and contrast)

e feature extraction (based on local features)

e feature selection (category and query dependent)
e indexing (multiscale blob-representation)

e identification (incorporate a-priori knowledge)

e retrieval (on blob-level)

To enable complex queries for medical purpose, the information retrieval system must be familiar
with the class of a given image prior to query processing, as this information is of great interest
for the following IRMA steps. For example, searching a pulmonal tumor in a skull radiograph is
senseless (as - by definition - a pulmonal tumor is always located in the lungs), and ultrasound
images need different processing than radiographs (as the characteristics of an ultrasound image
greatly differ from those of a radiograph). Thus, if a radiologist is searching the image database
for all radiographs showing a pulmonal tumor, the IRMA system only processes radiographs which
are classified as ‘chest’ (or have a posterior probability for ‘chest’ that is higher than a user-defined
threshold). On all pictures fulfilling this constraints, the (probably computational more expensive)
search for tumors is done, for instance by using statistical classifiers such as proposed in [17]. The
categorization step therefore not only reduces the computational complexity needed to answer an
IRMA query, it will also most probably reduce the ‘false-alarm’-rate of the system, improving its
precision.
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Figure 6.5: The IRMA architecture

Three major classes are defined: image modality (physical), anatomic region (anatomical) and
image orientation (technical). In a first step, six anatomic regions are distinguished: (1) abdomen,
(2) limbs, (3) breast, (4) skull, (5) chest and (6) spine. These instances build subclasses resulting
in hierarchically structured IRMA-categories. While modern DICOM imaging devices provide
information required for image classification, automatic content based classification is required for
fast archiving of images acquired by film-based modalities such as radiographs. Once the class of
a given image has been determined using global features, subsequent IRMA processing steps can
use this information to extract problem specific features needed to answer complex queries. As
classification is not necessarily unique (a chest radiograph might be labelled ‘chest’ and ‘spine’ at
the same time), this step is called ‘categorization’ within the IRMA system. Thus, each image
can be linked to several categories and the likelihood for each of these is also stored in the IRMA
database. Therefore, classifiers used for categorization should be rather sensitive than specific.

After categorization, the image is registered to a prototype which has been previously defined by
an expert or by a statistical data analysis [17, 22]. In the following feature extraction step it is
distinguished between so called ‘category-free’ features (which are suitable for all categories, i.e. a
gradient image) and ‘category-specific’ features, (i.e. segmentation of the ribs in a chest radiograph).
In the feature selection step, appropriate features for a given query are chosen. One possibility to
do this is performing a linear discriminant analysis (LDA) [27, pp. 114-123], which proved to be
very efficient in first experiments [22]. In the indexing step, a compact representation of the given
query image and the features extracted is created. Based on each set of feature images, the query
image is segmented into relevant regions. Region representation (at multiple scales) will then be
done via blobs. This hierarchical multiscale approach will allow the user to retrieve from entire
images as well as from regions of interest. The blob-identification step might be useful for queries
concerning details defined within organs or other objects in an image. In the final retrieval step,
the query is processed via suitable distance measures defined on the entire image or on blob-level
respectively.
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6.2 State of the Art

In this section state of the art results for the described databases are presented.

Optical Character Recognition

Reported results for the OCR databases are summarized in Table 6.1. The table shows the human
performance and the results of the 1-NN classifier as a basis for comparison. (“Nearest neighbor
classifiers are extremely simple and always worth trying as a benchmark with any classification
task.” [37]) The LDA error rate seems high in comparison, but only nine features were used for
classification and the authors of [37] report the same error rate for LDA based features.

Best results reported so far on the USPS corpus were obtained with an extended training set aug-
mented with about 2,400 machine printed digits, using a nearest neighbor classifier implementing
TD and a boosted neural network. In contrast to this approach in the experiments for this work
the effective size of the training set is increased by data multiplication but no new data is added
to the training set. In the experiments carried out for this work no better results than 3.3% error
rate with the original training set were obtained employing a 1-NN classifier with TD (affine trans-
formations and line thickness). Using a bagged kernel density based classifier and virtual training
and testing data (by shifting the images one pixel into eight directions), where different test results
were combined using the sum rule, it was possible to reduce the error rate further to 2.2%, showing
the effectivity of the TD approach [51].

Table 6.1: Results for OCR databases

Error rate [%]

Method USPS | NIST
Human Performance (SIMARD’93, [89]) ‘ 2.5 ‘ 0.2 ‘

Linear Classifier (for comparison [8]) - 8.4

Neural Net (LeNetl, LECUN’90, [8]) 4.2 1.7

Neural Net (LeNet4, LECUN’95, [8]) - 1.1

Neural Net (LeNet5, LECUN, [98]) - 0.9

Invariant Support Vectors (SCHOLKOPF’98, [81]) 3.0 0.8

Support Vectors (CORTES’95, [87]) - 1.1

Tangent Distance (SIMARD’93, [89]) *2.5 1.1

Boosting (DRUCKER’93, [26]) *2.6 0.7

Local PCA, GMD (MEINICKE’93, [68]) - 1.6

i6: MD|35] 34 17

Invariant Moments, MDI[77] 4.0 -

This work: 1-NN, Euclidean distance 5.6 3.5

1-NN, Euclidean dist., 9D LDA reduced features 10.7 —

Holographic Classifier 6.0 -

TD, 1-NN classifier 3.3 1.9

TD, extensions 2.4 1.0

TD, extensions, bagging [51] 2.2 -

* training set extended with 2,400 machine printed digits
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To somewhat circumvent the ‘dangers’ of training on the testing data, the parameters which were
optimized on the USPS corpus were tried on the NIST corpus for the results given. This shows that
no overfitting to the special problem of the USPS database occurred, but the algorithm generalizes
considerably well.

One drawback of the USPS database is the relatively small test set size, which makes the error
rates statistically less significant [8]: “As our test error rates moved in the range of 3% (60 errors),
we were uncomfortable with the large statistical uncertainty caused by the small sample size.”
This is not the case for the five times larger test set of the NIST database, which makes a more
thorough evaluation possible. Nevertheless the USPS corpus is an excellent means for developing
a classifier, especially because of the small size.

This work is to a certain degree not concerned with algorithmic resources, so they are not presented
in this comparison. For a comparison of different classifiers with respect to time and memory
requirement see e.g. [8].

Radiograph Images

For the IRMA database only few results are available since it is not in widespread use but originated
from the project at the RWTH Aachen. Table 6.2 shows the results available so far.

The unfavorable results for the linear discriminant analysis (LDA) may be explained by the fact
that the estimation of the necessary covariance matrices determines 322 - (322 — 1)/2 = 523776
values from only about 1600 training samples. If test and training data are the same the LDA
features achieve an error rate of below 1%. This may be surprising at first, but considering the
enormous number of degrees of freedom (alreay the number of features is in the same order of
magnitude as the number of samples) it seems sensible that the LDA can separate the classes
almost perfectly when all data is known. On the other hand this underlines the need for a large
amount of training data.

Table 6.2: Results for the IRMA database

Method | ER (%] |
1-NN 18.2
Kernel densities (KD) 16.4
Cooccurrence Matrices 29.0
Active shapes (BREDNO 2000 [12]) 51.1
i6: KD, thresholding 14.2
+ Tangent distance 12.9
+ Image distortion model 10.3
+ Aspect ratio 8.6
This work: + Optimization 8.2
1-NN, LDA, 5 features 53.2
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BREDNO et al. applied an active shape approach to the categorization problem [12]. For form
based image retrieval they extracted the outline of the shapes using balloon models and extracted
invariant signatures from the outlines for classification. Using a 1-NN classifier the best error rate
for leaving-one-out of 51.1% was achieved using invariant moments. On the 496 images where the
outline detection was subjectively successful the error rate achieved was 34.9%.

KOHNEN et al. used edge detection in combination with a principal component analysis of training
data shapes for invariant classification of extracted forms [59]. The optimization over possible
transformation parameters is a computational expensive step in their model and is achieved by
applying a simulated annealing procedure. So far two active shape models incorporating domain
knowledge have been implemented for the forms “hand” and “vertebra”, which are separated well,
but no results for the complete database are available.
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Chapter 7
Experimental Results

“Forty-two,” said Deep Thought, with infinite majesty and calm.

[1]

This chapter contains the description of the various results that were obtained in the experiments
carried out for this work using the databases described in Chapter 6. The chapter is divided
into two parts concerning optical character recognition and radiograph categorization, followed
by a a short comparison of the two tasks. The main emphasis lies on the different aspects of
tangent distance and other invariant distance measures considered, but some further results are
also presented.

7.1 Optical Character Recognition

The following section deals with the results for the databases presented in Section 6.1.1 (USPS)
and 6.1.2 (NIST). Most of the experiments were conducted on on the USPS database due to its
smaller size, which renders it more suitable for testing different approaches. The NIST database
was only used as a verification corpus here, in that the best performing classifier for USPS was
also tested on this larger data set. First, an overview of the achieved results is given, with some
emphasis on data multiplication and classifier combination, then different approaches are presented

in more detail.

Table 7.1: Summary of basic results, error rate on USPS [%]

Data multiplication

Method 1-1[91]1-9]99

Baseline, ¥ = 021 | 1-NN 5.6 | 4.6 | 4.7 | 4.3
KD 5.5 | 45| 45 | 4.2

TD, KD a priori tangents SS, u 3.7 - - -

SS, 331301]29]28
DS, u,z | 3.0 | 25 | 2.6 | 24
estimated tangents, 7 dim. | SS, u 5.0 | — — -

87
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Figure 7.1: USPS errors with class labels for the best result with 2.2% error rate
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Table 7.1 summarizes the main results of experiments with the USPS database concerning tangent
distance. The notation ‘a-b’ indicates the increased number of training samples by factor ‘a’ and
increased number of test samples by factor ‘b’ using data multiplication with image shifts in eight
directions. The term ‘a priori tangents’ refers to the tangents calculated using the derivatives with
respect to the affine transformation group and line thickness as proposed by SIMARD and described
in Section 4.2, while ‘estimated tangents’ refers to the estimation of tangents from the covariance
matrix ¥ as described in Section 5.1.2 and usage of the same tangent directions for all references
(here).

Regardless of the chosen distance measure multiplying training and test data consistently improved
classification results. The experiments showed that it is advisable to compute the tangents for the
test data when computing the single sided tangent distance on this corpus (1-NN performance:
3.4% for observation side vs. 3.8% for reference side, KD performance 3.3% vs. 3.7%). 1-NN
was chosen here as baseline result as according to [87], & = 1 was the best choice for k&-NN on
USPS. The usage of the proposed Euler-Cauchy distance measure (see page 52) did not improve the
classification results here. Multiplying the training data with tangent approximations or thinned
versions of the images did not achieve lower error rates, while the usage of different norms || - ||
enhanced results for the basic KD classifier, but not for the best.

The variety of implemented and tested classifiers respectively parameter settings invited the usage
of classifier combination [57] with the hope that the different classifiers together could improve
the single best result. This hope seemed to be justified, because the sets of images that were
misclassified by the different approaches were not strictly included in each other, but various
distinct mistakes were made by the classifiers. With respect to this KITTLER stated in [57]: “It
had been observed |...], that although one of the designs would yield the best performance, the sets
of patterns misclassified by the different classifiers would not necessarily overlap. This suggested
that different classifier designs potentially offered complementary information about the patterns
to be classified which could be harnessed to improve the performance of the selected classifier.”

Using a combination of five classifier results of different settings the best result could thus be
improved to 2.2% error rate. Fig. 7.1 shows the remaining errors with their class labels. The
remaining errors can be interpreted differently, some of them appear to be label mistakes, some
are hard tasks even for a human (or illegible as the first and third image of the second row), and
some shapes do not appear in the training data, as it is the case with the three consecutive ‘1’s
in the lower row, which were classified as ‘7’s. Errors like the first image illustrate the limitations
of distance based classifiers (there exists a training image of class ‘five’ which is almost identical,
shown in the second row from the bottom of Figure 7.2).
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The best result of 2.2% error rate was obtained combining the a posteriori probability density
outputs p(k|x) of five different parameter settings for the kernel density classifier using the majority
vote rule (in this case the sum rule led to 2.3% error rate). The five settings used were the following:

(1) basic KD classifier, single sided TD, 3.3% error rate

(2) 15 times multiplication of the training data with tangent approximations (7 tangents in 2
directions plus original), single sided TD, KD, 3.4% error rate

(3) double sided TD with 9 times multiplication of training and testing data, KD, 2.4% error
rate

(4) double sided TD with 9 times multiplication of training and testing data, squared I3-norm,
k-NN with k = 2, 2.4% error rate

(5) double sided TD with 9 times multiplication of training and testing data, squared l3-norm,
k-NN with k = 6, 2.5% error rate

The combination results compare well to the experiences expressed in [57]: “Mean rule as well as
the median rule have the best classification results. Majority vote rule is very close in performance
to the mean and median rules.”

For comparison the single experiment which obtained the best result of 2.4% on the USPS corpus
(3) was repeated on the NIST database and an error rate of 1.0% was obtained. Table 6.1 of
Chapter 6 shows the results in comparison to those obtained by other groups, being not the best
but well comparable to the state of the art results. Considering that all optimizations for the
method were performed for USPS, the NIST error rate of 1.0% is surprisingly low, which shows
that the approach generalizes well and the parameters were not overfitted. Since not all experiments
were repeated for NIST, bagging was not applied on this database.

Figure 7.2 shows some examples for the basic 1-NN classifier on the USPS database. 1-NN was
used as a baseline result for most experiments here and achieves an error rate of 5.6% on the
data. The figure demonstrates the “judgment” of the Euclidean distance for the appearance based
approach taken. For instance in the examples for correct classification it can be noticed that similar
line thickness seems a very strong factor for overall similarity. This is a result confirmed by the
investigations on tangent distance, since best improvements could be obtained using the tangent
for line thickness. Also, in the correct classifications the best matching references are very similar
to the observation images, which underlines the necessity of large training data sets in order to be
able to recognize varying input patterns. Another observation may concern the limitations of the
appearance based approach for OCR. The matchings found for the incorrectly classified examples
are very similar in a pixel to pixel comparison, but for the human viewer other concepts than
intensities are more important here, including e.g. stroke directions and line endpoints.

Table 7.2 shows a summary of the results for tangent estimation for the reference side (in double
sided tangent distance, a priori tangents were used on the side of the observation data) from the
covariance information of the training data, following suggestions from [38] and the theoretical
considerations of Chapter 5. It can be concluded that the estimated tangents provide a better
means for the description of the density functions than the a priori tangents, if a low number of
references per class is used (at least for classification purposes in this context). This is an advantage
if the aim is to build a fast recognizer, since the computational effort is closely related to the number
of references (or densities) used. A similar result is reported for discriminative training of Gaussian
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Figure 7.2: Examples for Nearest Neighbor recognition on USPS (with class labels), first image:
test pattern, following: best references from each class in order of increasing distance to the test
pattern. Top four rows: correct classification. Bottom three rows: incorrect classification.

mixture densities in [22]. If each training sample is used as a reference, the use of the a priori
tangents leads to better results than the estimation. A closer look on experiments conforming
this is taken in Section 7.1.2. Using the squared relative eigenvalues as weight coefficients for
the estimated tangent directions means overestimating the variance proportions quadratically.
This implies that large variances are increased, while low variances are decreased relatively. One
possible interpretation for the success of this method is that large variances may represent intra-
class variation, while low variances represent variance by chance or noise components, which should
not be used to represent the class-specific information.

7.1.1 Implementing Tangent Distance

When implementing tangent distance as described by SIMARD et al. in [89], the first experience
was that the way of calculating the tangents is crucial. Taking only finite differences on the original
data did only marginally improve classification results. Only when larger templates approximating
a suited smoothing prefilter were used, the error rate could be reduced significantly. The used filter
is a variant of the Sobel operator [65, p. 213], which can be interpreted as a Gaussian filter kernel
combined with differentiation as described in Section 4.2.
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Table 7.2: Summary of results for tangent estimation, error rate on USPS [%]

Subspace dimension
# Features ‘ # References | Tangent usage 0 ‘ 7 ‘ 10 ‘ 12 ‘ 14 ‘ 20 | a priori (7)
256 1 SS 186 | 6.8 | 6.5 | 5.7 |62 | 6.9 11.8
DS 186 | 6.1 | 5.6 | 5.4 | 5.0 | 5.7 9.9
8 DS 124 | 46 | 4.1 | 4.3 | 4.7 - 6.5
39! 1 SS 125199 1 9.0 [ 9.0 | 9.2 | 11.8 -
SS? 125 | 89 | 8.8 | 88 | 8.7 | 87 -

I obtained via LDA using 40 pseudoclasses

2 vectors weighted with relative squared eigenvalues

The basic results for tangent distance based classification are given in the previous section.! In
comparison to the results of SIMARD et al. the improvements achieved are based on

e the incorporation of tangent distance into a kernel density based classifier, which proved
superior to a k-NN based classifier, for which best results were reported for £k = 1 on the
USPS database and

e the usage of multiplied training and test data, using the virtual test sample method.

Although tangent distance should already compensate shifts of one pixel displacement, the data
multiplication approach still led to improvements. This is probably due to the fact that the two
approaches model invariance differently (compare Fig. 7.3). While the explicit image shift leads to
a movement of the pattern directly along the shift transformation manifold, the tangents model all
the regarded transformations and at the same time are a first order approximation of the manifold.

Figure 7.3: Tangents of shifted data in 2D

Since tangent distance has the advantage not to depend on a classifier design, it can be used in a
variety of classifiers. Results of experiments with tangent distance in combination with a Gaussian
mixture density based classifier were presented by DAHMEN et al. in [17], improving classification

performance.

When tangents on the side of the observations as well as on the side of the references are used, there
are several methods to circumvent the expensive minimization over the 14 dimensional resulting
space spanned by the tangents of both sides (which can be achieved using singular value decompo-
sition or solving the corresponding least squares problem, where the two methods have about the

1Note that the value used for o2 was 1.0, which yielded best results on the USPS data with graylevels in the
range [0.0;2.0].
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Table 7.3: Some results for “line distance”
ER [%)]

Method 1-1 | 9-9

Double sided line distance 3.0 28

Double sided tangent distance | 3.2 | 2.4

same operations count). Figure 4.5 shows the points and distances involved. The illustration shows
Euclidean distance ||z — p||, single sided tangent distance ||z — z’|| with tangent ¢,, on the side of
the reference, single sided tangent distance || — p'|| with tangent ¢, on the side of the observation
and double sided tangent distance as indicated. SIMARD et. al. proposed to use the minimum
distance between the lines that connect (u,z’) and (x, u') (called “line distance” here) instead of
the overall minimum distance [89]. This requires only a minimization over two dimensions, if the
tangents are precomputed and orthonormalized, which is computationally cheaper. (Note that in
the case of one-dimensional tangent subspaces, as in the illustration, the two methods are identical,
but this is not the case if tangent subspaces have dimensions greater than one.) Table 7.3 shows
two results obtained with this method, performing even better than the computationally double
sided tangent distance without virtual data, but not in the case of multiplied data.

Looking at the three different distances introduced above, one might think about using a (weighted)
combination, but of several experiments with different combinations none improved the perfor-
mance. One could also use the distance of the projections ||z’ — /|| for classification, but again

the experiments were not successful in improving classification.

Furthermore, SIMARD et al. report improvements for a normalization of the tangent distance with
respect to the length of the compared vectors when using tangent distance [89]. In the experiments
for this work experiments for normalization with respect to Euclidean and squared Euclidean norm
were tested, but neither led to improvements in recognition.

7.1.2 Centroid Model and Learned Tangents

In Chapter 5 a method has been derived to estimate the tangent vectors from the training data un-
der the assumption that an underlying low-dimensional variation is present in the data distribution.
Some experiments have been carried out in order to verify these theoretical results.

The approach presented in this work is similar to the one presented by HASTIE et. al. in [38],
although more importance is placed on the calculation of the references point there. In the ex-
periments for this work the modification of the reference with respect to tangent distance did not
yield superior results in all cases. The authors describe what they call centroid of a set of points as
the linear subspace (of a given dimension) that minimizes the average squared norm to the points
in that set. If Euclidean distance is used, this yields exactly the subspace spanned by the mean
vector and the principal components of the empirical covariance matrix. If instead of the Euclidean
distance tangent distance is used, this is no longer true. First consider the case of double sided
tangent distance. To determine the minimizing subspace no better algorithm than an iterative
method is known here [38]. Conceptually it iterates two phases after calculating the tangents for
the given points until convergence:

(1) calculate the tangents for the center
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Table 7.4: Single reference results for a priori tangents, error rate on USPS [%]

Distance used Center used

in recognition Mean Tangent Centroid SS | Tangent Centroid DS
Euclidean 18.6 20.7 19.3

TD, SS, = 14.0 13.3 13.5

TD, DS 9.9 9.5 9.6
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(2) calculate the center as point that minimizes the tangent distance given the tangent directions
(which amounts to calculating a mean vector in the orthogonal subspace and using the
resulting displacement vector in the original space)

Although no guarantee for convergence can be given, the algorithm converges quite successfully.
The resulting center is called tangent centroid, if the a priori tangents are used. On the other
hand, if in step (1) the tangents are determined as learned tangents (by calculating the principal
components of the data distribution of the given data points with respect to the current center)
and considering the known tangents of the data in (2), the result is called tangent subspace by the
authors.? Step (1) then amounts to performing a singular value decomposition of the difference
vectors in the orthogonal subspace or (equivalently) to calculation of the principal components of

the corresponding covariance matrix.

One might also want to regard single sided tangent distance in this context. For this setting there
are three different possibilities:

(1) Use a priori tangents on the side of the center.
(2) Use estimated tangents on the side of the center.

(3) Use tangents on the side of the data. (Here a distinction between a priori and estimated
tangents is not useful, one can just consider the tangents for the data as ‘given’.)

For cases (1) and (2) the center is not affected but is just the arithmetic mean of the data vectors,
since the mean does not change under orthogonal projections, which is the effect of tangent distance
in this case. For case (3) the mentioned iterative algorithm can be used to determine the center.

As already mentioned in Chapter 5, the approaches which take into account the tangents of the
data in the manner described here have the possible disadvantage that directions which coincide
with the average tangent directions of the data points receive lower attention. This is because they
are disregarded due to the prior tangent distance calculation. With respect to that subject HASTIE
& SIMARD write in [37] “Note that the SVD without tangent distance would tend to mix the affine

)

invariances with these digit specific invariances.” It is not clear, however, why this should be a
disadvantage. To the contrary, it might be considered an advantage if the algorithm is able to

determine the best mix of variations needed.

In the following some results from the experiments are given. Table 7.4 shows that the tangent
centroids are better suited as references for recognition than the arithmetic mean vector if the a
priori tangents are used (here with one reference per class). In this case the description of the

2 Although this name seems somewhat too general, because it is also used for the subspace created by the a priori
tangents here, no confusion should arise, since the meaning should be clear from the context.



94 CHAPTER 7. EXPERIMENTAL RESULTS

Table 7.5: Results for tangent subspace method, error rate on USPS [%], 256 dimensions. Single
sided refers to the side of the center.

# References Method Tangent subspace dimension A priori tangents
per class Calculation® ‘ Classification | 7 ‘ 10 ‘ 12 ‘ 14 ‘ 20 (for reference, 7 dim.)
1 Double sided | Double sided | 6.4 | 6.0 | 5.4 | 5.7 5.6 9.9
Single sided Single Sided | 6.4 | 6.2 | 5.5 | 5.8 5.7 11.8
(emp. mean) | Double sided | 6.1 | 5.6 | 5.4 | 5.0 | 5.7 9.9
8 Single sided | Double sided | 4.6 | 4.1 | 4.3 | 4.7 - 6.7
15 (emp. mean) 42 | - - - - 6.5

L of the tangent subspace

data seems to improve with the usage of the centroid models. Note that the mean vector column
also corresponds to the case ‘tangent centroid, SS, Center side’, as stated above, while the SS
tangent centroid in the table refers to the tangents on the side of the data. For a comparison of
achieved classification rate one may regard the results for a Gaussian single density, which yields an
error rate of 19.5% for the 256-dimensional images respectively 12.8% with prior LDA dimension
reduction to 39 dimensions [17]. But as Table 7.5 shows, the estimated tangents perform far better
than the a priori tangents with small number of references. Already for one reference the error rate
can be improved from 9.9 to 6.1%. (Note that this advantage of the estimated tangents vanishes
with increasing number of references; error rates for 7291 references are presented in Tables 7.1
and 7.6. If the number of references is increased while the tangents are not calculated for each
reference, but the same tangents are used for all the references of one class, the performance is
significantly inferior to the individual tangents, that is for seven estimated tangents the error rate
is 5.0% and for twelve tangents it is 4.9%. If one considers that for single references per class
and a 14 dimensional tangent subspace already an error rate of 5.0% can be achieved, this is not a
significant gain.) Experiments were concentrated on the tangent subspace method in the following,
because it performed better in this comparison. It can be seen that the optimum dimensionality
for the tangent subspace seems to be about twelve, which is the same result as obtained by the
authors of [38]. Furthermore it can be noticed that double sided classification is superior to single
sided classification in all observed cases. But on the other hand in calculation of the reference
the empirical mean (identical to single sided center calculation) with principal components seems
superior to the more complicated double sided tangent subspace calculation using the iterative
algorithm. This is a result different from the one presented in [38]. A possible explanation is
the lower importance of data point tangent directions in the resulting subspace, which may not
be desired. It also shows that the estimated tangent directions have more importance than the
estimated means. This setting was tested on a larger number of prototypes, where pseudo classes
were constructed using EM training of Gaussian mixture densities [35]. An increasing number of
prototypes benefits classification performance as would be expected. (Note that HASTIE et. al.
in [38, 37| report an error rate of 3.8% for 5 prototypes per class and 4.1% for single references,
which are results the experiments described here do not confirm.) For large number of references
per class it gets increasingly difficult to estimate the tangent subspace, since during the clustering
step some clusters are assigned a low number of data points, such that the number of non zero
eigenvalues in the respective covariance matrices decreases. For example with 15 references per
class on the average each cluster contains 7291/(15 - 10) & 50 data points, but clusters with far
fewer points cannot be easily avoided. Therefore for more references no experiments for greater
tangent subspace dimension could be performed.



7.1. OPTICAL CHARACTER RECOGNITION 95
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Figure 7.4: Comparison of subspace of a priori tangents (left) and subspace of estimated tangents
(right), both orthonormalized for a better comparison and ordered by decreasing eigenvalue. First
column: reference vectors.

Figure 7.4 shows the different subspaces for single references. One can see that the estimated
subspace contains variations that are not of the geometrical nature as is the case for the a priori
tangents. For example the third image in the ‘2’ row (on the right) depicts a tangent vector that
modifies the size of the loop in the digit. This is clearly not an affine transformation, but seems
a very logical modification to be modeled. This raises the hope of improving tangent distance by
adding the estimated tangents, and indeed the estimated tangents outperform the a priori tangents
for single references. But as the number of references increases it becomes more difficult to estimate
meaningful tangents from less samples per reference.

To circumvent this problem one can resort to the methods introduced in Section 5.1.5. For these
local subspace experiments nearest samples from the same class of each reference were taken,
then principal components of the local covariance matrix (Eq. (5.18)) were determined and used
as tangents. This is only possible for the side of the references, therefore the results should be
compared with the a priori tangents on that side (which gave lower performance than the use of
the tangents on the observation side in the single sided experiments). Table 7.6 shows the obtained
results with that method for a varying size of the local set X,,. The obtained result is best for a
set size of about 20 and surprisingly close to the one for a priori tangents, but not as good as for
a priori tangents on the side of the observations with 3.3% error rate.
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Table 7.6: Some results for the local subspace approach on USPS. Subspace dimension 7.
# samples used for estimation, |X,| 7 10 | 15 | 19 | 20 | 21 | 22 | 25 || (a priori)
Error rate [%] 4314340 |40]38|38|40]42 3.7
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Figure 7.5: Error rate vs. number of dimensions of the tangent subspace, for different settings.
USPS, 39 dimensional LDA-reduced features

To obtain results for patterns for which the directions of variation within each class are not known a
priori, experiments were carried out after a transformation to a reduced feature space. The patterns
were transformed performing an LDA using 40 clusters of the data, yielding 39 features [20, 35].
These features reduce the error rate without tangents and with Euclidean distance from 18.6% to
12.5% for single references. Using the estimated directions of variation this result can be improved
to 9.0% for L = 12. Employing a weighting of the directions with a function of the eigenvalue
lets the error rate drop further to 8.6% and the error rate becomes a monotonously decreasing
function of L, because the components with small eigenvalues are practically discarded. This has
the advantage that the parameter L needs not be determined explicitly. This dependency is shown
in Figure 7.5 for three different variants. As proposed in Section 5.1.2 the setting of ¥ = 021 was
chosen and the tangents were estimated as the principal components of the class specific empirical
covariance matrix. (The graph labeled with ‘global pooling’ shows the results for usage of the
global covariance matrix. This does not contain the class specific variation information in this case
and the error rate increases quickly with the number of eigenvectors used.) If the eigenvectors are
equally weighted, the error rate can also be reduced from 12.5% to 8.6% but the right number
L of eigenvector needs to be determined, which is not the case for squared relative weight of the
eigenvalues here. This corresponds to the following codebook exponents #; as a function of the

o = ( . (&)2) 1)

Using not the squared but the direct relative eigenvalue the recognition could even be improved to

corresponding eigenvalue \;:

8.2%, but the monotonicity in the dependency on L was lost. Figure 7.6 illustrates the eigenvalues
of the ten class specific covariance matrices for the 39 dimensional features. For reference the per-
formance of the 39 dimensional feature space with all 7291 training patterns should be considered,

which is 7.0% error rate if no covariance information is considered.



7.1. OPTICAL CHARACTER RECOGNITION 97

500

T
Eigenvalues —+—

Figure 7.6: Eigenvalues of the class specific covariance matrices for the ten digits. USPS, 39
dimensional LDA-reduced features

On the original images with 256 features, the usage of the weighting of the principal components
led to an inferior performance. The best result for squared eigenvalue weighting is here 8.7% error
rate and for weighting with the simple eigenvalues it is 6.7%, while for no weighting the error rate
can be reduced to 5.5%. The reference value in absence of variational modeling is here 18.6% for
one reference per class respectively 5.6% for 7291 references. It seems quite remarkable that the
using the variational modeling the error rate for only one reference per class can be lower than the
error rate for about 700 references per class using just Euclidean distance.

Figure 7.7 shows the estimated tangents for the NIST database, which illustrate the increased
variability in the corpus in comparison to the prenormalized USPS images. For example the first
tangent vector for the class ‘1’ models the rotational variance in that class, which is not present
to that degree in the USPS collection. This explains the extremely high error rates obtained using
single references per class, which were 77% for a priori tangents and 60% for estimated tangents.
These results suggest that normalization and invariant distance measures can very well be used
together to achieve good classification results with small numbers of references.

7.1.3 Comparison of Tangent Vectors

TD is usually applied using the seven transformations proposed in [89] (translations (2), scaling,
rotation, axis-deformations (2), and line-thickness) where the first six account for affine variations.
Here a number of different tangents were tested including projective transformations, brightness,
contrast and different versions of the thickness tangent, but it was not possible to improve the
results of the original tangents with USPS. In the following the importance of the different tangents
is compared.

The main results are listed in Table 7.7, giving absolute error rate improvements for the different
tangents in two settings. In the first part the improvement due to adding the tangent to the
remaining six tangents is presented while in the second part the improvement due to adding the
specific tangent as the first tangent is shown. For the latter case also the results for the projective
tangents are included. The ranking in the two settings is consistent and it can be seen that the
combination of all the tangent vectors is the best choice. The combination of these seven tangents
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Figure 7.7: Estimated tangents for the NIST database.

may not be the optimal one of all the possible combinations of the various tested tangents. It
should be considered, though, that the optimum combination is hard to determine and moreover
may not be optimal for other databases at all.

In addition to the tangents listed above, some other approaches were tested. For example splitting
of the thickness tangent in two gradient tangents with respect to horizontal and vertical line
thickness was implemented with the hope to account for possible independent changes, but the
results showed no improvement over the single line thickness deformation. Furthermore a contrast
tangent was used, consisting of the relative offset of pixel values with respect to the mean value,
but again no improvement could be obtained. These results agree with the statement “Additional
transformations have been tried with less success” [87].

In order to confirm the theoretical result (see page 48) stating that the four linear transformations
rotation, scaling, axis deformation and diagonal deformation can be expressed in the canonical
basis resulting from variation of exactly one of the linear parameters, the resulting four basis
tangents were implemented and — not surprisingly — led to identical results.

7.1.4 Euler-Cauchy Approximation
The Euler-Cauchy algorithm was used in the experiments in different parameter settings, the most

important ones in this implementation being the iteration number (a preset number of iterations
was used as stop criterion here) and the displacement fraction, controlling the relative displacement
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Table 7.7: Comparison of tangent vector influence. Improvement is given as absolute difference in
error rate with respect to the KD reference.

ER [%]

Tangents used 1-NN ‘ KD | Improvement
all 7 3.4 3.3 -
without thickness deformation | 4.0 4.0 0.7
without vertical translation 3.9 3.8 0.5
without rotation 3.8 3.6 0.3
without horizontal translation 3.7 3.6 0.3
without diagonal deformation 3.7 3.6 0.3
without scaling 3.6 3.6 0.3
without axis deformation 3.5 3.4 0.1
no tangents 5.6 5.5 -
only thickness deformation 5.0 4.8 0.7
only vertical translation 5.1 5.0 0.5
only horizontal translation 5.4 5.2 0.3
only rotation 5.4 5.3 0.2
only scaling 5.5 5.4 0.1
only diagonal deformation 5.5 5.5 0.0
only axis deformation 5.6 5.5 0.0
only projective Eq.(4.41) 5.4 5.2 0.3
only projective Eq.(4.42) 5.6 5.5 0.0

along the tangent vector. None of the tested versions of the Euler-Cauchy method improved the
overall classification rate, although it was hoped that the possibly better modeling of the manifolds
could lead to an improvement.

When the algorithm was used with ten iterations and displacement fraction of 0.3 (these settings
produced the best results) it was able to correctly classify 57% of the test data which the basic
1-NN classifier failed (if this improvement had been consistent, 2.4% total error rate would have
been achieved), but on the other hand introduced additional mistakes in the remaining data, the
overall error rate being 3.5%. This result is in agreement with the findings of SIMARD et al. :
“This process did not improve handwritten character recognition, but it yielded impressive results
in face recognition.” [87]

This result leads to the conclusion that introducing more matching power seems to result in a trade-
off between improved matching of correct samples and restricted matching of incorrect samples,
since it allows larger variations in the alignment of patterns, both towards correct and incorrect
reference images. (Fig. 7.11 in Section 7.1.9 visualizes this effect showing the tolerance of the
different distance measures with respect to a horizontal displacement, where one image from each
class was randomly selected and the distances to one displaced image were calculated.)
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Table 7.8: 8 x 8 pixels USPS, class-specific covariance matrices for estimation,‘ N;-structured’ refers
to structure according to the Neighborhood in the image of Figure 5.1.

Structuring of X diagonal | Nj-structured | Ns-structured | full | tangent
ER [%] | threshold 5.7 5.5 5.1 4.6 4.6
interpolation, A = 0.9 5.3 5.2 4.8 4.0 4.6

7.1.5 Structured Covariance Matrices

This section contains various results performed to investigate the influence of structured covariance
matrices as proposed in Section 5.2. The approach described lead to a large bilinear equation system
(Equation (5.30))

v.xl=1

with known elements in both matrices, that must be solved in order to apply the statistical pattern
recognition methods. Without deeper knowledge on the subject of numerical algorithms for that
specific task experiments were started using a gradient descent algorithm, which proved not suitable
for the task. A Newton algorithm was ruled out, since a derivative matrix of size 32896 - 32896
would have to be calculated and inverted. Finally one arrived at the Newton-SOR or Gauss-Seidel
algorithm which seemed suitable for this problem, seeking help in the basic literature [34, 79, 94]. It
was discovered that convergence for large matrices ¥ with 256-256 entries could not be achieved in
acceptable time, but the algorithm worked well for smaller matrix sizes.? Therefore the experiments
were carried out using scaled down images of the USPS to sizes of 8 x 8 and even 4 x 4 pixels.

The most representative results obtained with an image size of 8 x 8 pixels are shown in Table 7.8.
All results in this section were obtained using a 1-NN classifier. In order to cope with the problems
of zero variances, which occur in some diagonal entries of the estimated covariance matrix, two
possible methods were tested. First, a minimum threshold for the estimated variance was fixed
consistently with the minimum occurring non zero entry, which is denoted by ‘threshold’ in the
table. Secondly, the estimated matrix was linearly interpolated with the identity matrix, that is

S = AT+ (1= AT

This amounts to a log-linear interpolation of the probabilities resulting from Euclidean and Maha-
lanobis distance. As one would have expected, estimation of a band structured covariance matrix
reduces the error rate as compared to a diagonal structure. The best results are obtained using
a full covariance matrix. This is not surprising, as only a single covariance matrix per class was
estimated, using downscaled USPS images. Interestingly, using the tangent distance based struc-
ture yields the same results as compared to a full ¥ here for the threshold method. In contrast
to this, the full covariance matrix yields better results with interpolation, which proved superior
in all cases. At the same time, the usage of the covariance structure reduces the computational
complexity significantly. Using the original 16 x 16 pixels sized USPS data, the tangent structure
(3.3%) significantly outperforms a full covariance matrix (6.3%), as the number of free parameters
in ¥ increases by a factor of 16).

3Shortly before termination of this work a method described by POSL in [78] came to my attention, which may
be used to speed up the process significantly, but due to a lack of time it could not be determined if and how this
may be possible. Furthermore I cannot rule out the existence of much faster, better performing methods than the
ones used here.
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Table 7.9: Results on USPS size 16 x 16 with class specific covariance matrices inflated from size
8 x 8 covariance matrices. ‘N;-struct.” refers to structure according to the Neighborhood in the
image of Figure 5.1.

Structuring of Y. =02l | ¥ =02I,infl. | diagonal | Nj-struct. | Na-struct. | full
ER [%] | structure 5.6 5.3 5.6 5.4 5.3 4.5
+ tangents 3.3 3.8 4.8 4.7 4.3 4.0

One idea to overcome the problem with high-dimensional covariance matrices which lead to in-
ferior classification results was to estimate the respective matrices using the lower dimensional
transformed data, then rescale the estimated matrices. This at the same time solves the problem
with the convergence of the algorithm used for solving the bilinear equation system, which worked
well for size 8 x 8 but did not converge in acceptable time for size 16 x 16. For the rescaling,
called inflating here, one needs to be careful in determining how to rescale the matrices, since the
structures in the smaller matrices may be present differently, which depends on the mapping of
the two dimensional image to the one dimensional feature vector. Usually it is not enough to just
duplicate the entries in the ‘inflated’ covariance matrix, but they must be distributed to the correct
positions. Results for this method are presented in Table 7.9. Note that two different results are
given for ¥ = o21, since for a fair comparison the inflation structure needs to be considered. Inter-
estingly this improved classification in the basic case, which may be due to the increased modeling
of dependencies between neighboring pixels resulting from inflation. Again it can be seen that an
increasing number of parameters in the covariance matrix is useful, if enough data to estimate them
is available. It furthermore can be concluded that such a tying of parameters, which is enforced
by downsizing and inflating (each estimated parameter in the covariance matrix for the size 8 x 8
images represents 16 entries of the covariance matrix for size 16 x 16, but the number of overall
pixels is only cut by the factor four) can be used to estimate parameters with higher reliability
if only a small number of training samples is available. If the structured covariance matrices are
used in combination with tangent distance, it can be observed that unfortunately the positive
effects are not additive in this case, but the tangent distance based classifier performs best when
the covariance matrix is used as ¥ = ¢2I. This may be due to the fact that the tangents already
account for a structuring of the covariance matrix, as presented in Section 5.2.

7.1.6 Image Distortion Model

In this section results for the (unsuccessful) experiments with the image distortion model as pre-
sented in Section 4.3 on the USPS corpus are presented. Figure 7.11 (lower right graph) gives an
idea why the IDM can probably not be applied successfully to the USPS task, the reason being
that almost all images can be mapped well onto each other using this transformation model. In
fact, in combination with tangent distance no experiment showed an improvement in classification

performance.

If the performance of the image distortion model alone is examined, that is without other variation
models as tangent distance, the results must be considered in more detail. The first experiment
for a region of radius one, implying a region of size 3 x 3 allowed for distortion, lead to an increase
in error rate of the kernel density classifier from 5.5% to 8.9%. This inferior performance may
be due to the large region size in comparison to the image size of 16 x 16 pixels. Therefore
experiments with fractional radii were performed, where the pixel values at positions off the image
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Figure 7.8: IDM error rate [%] on USPS with respect to region radius [pixels]

grid were determined by linear interpolation. Figure 7.8 shows the performance of the resulting
1-NN classifier with interpolated IDM distance on the USPS corpus with respect to the IDM region
size given by the radius in pixels. The best obtained error rate was 5.1%, with a corresponding
kernel density error rate of 4.9%. Seeing that the integer region sizes correspond to local maxima
of the error rate here (region size 1 pixel producing significantly higher error rates than size 0)
leads to the suspicion of a strong influence of the smoothing effect due to interpolation in the non
integer region sizes. Following this presumption leads to the result that with a local smoothing
kernel of the form

1111
1
2—01 12 | 1
11111

for convolution one obtains the same result of 5.1% respectively 4.9%, which means that the positive
effect in this case is only due to the smoothing effect of linear interpolation inherent in non integer
region IDM distance. Note that this positive effect of smoothing does not improve classification
using tangent distance as other experiments showed. Smoothing is sometimes also seen as ‘poor
man’s approach to invariance’, which is affirmed by these results.

The gradient based image distortion model following Equation (4.55) proved somewhat more suc-
cessful on the USPS database than the basic image distortion model. It did not lead to any
improvement on the error rate when used together with tangent distance, but without tangent
distance the error rate could be reduced from 5.6% to 4.9% for the 1-NN classifier. The gradient
based IDM is closely related to the thickness deformation, which explains, that in combination
with tangents no improvements could be obtained. Furthermore, the improvement induced by the
gradient based IDM is almost the same as the one resulting from tangent distance with thickness
deformation alone, which experimentally underlines the relation. Figure 7.9 shows the error rate as
a function of the weight parameter v from Equation (4.55), where a clear minimum is recognizable
and for high value of 7 the error rate converges to the values known without application of the
IDM.

7.1.7 Levenshtein-Moore Distance

Some experiments were carried out based on the algorithm for two dimensional Levenshtein dis-
tance proposed by MOORE [72]. One considerable drawback is the extremely high computational
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Figure 7.10: Error rate vs. binarization threshold on USPS database

complexity of the algorithm. This made it quite difficult to determine strengths or weaknesses of
the algorithm, because only very few experiments could be carried out. Since the original algo-
rithm was developed for images where the cost for substitution is independent of the pixel values,
experiments were conducted with binarized images. For a basis of comparison, results with the
classifiers discussed so far were produced on the USPS corpus. For that, it is necessary to fix a
binarization threshold, which distinguishes between ‘black’ and ‘white’ pixels. Figure 7.10 shows
the error rates of the basic classifiers with respect to the binarization threshold. Interestingly, the
error rate does not grow much when the threshold is moved towards 0. Even if only the grayval-
ues ‘white’ and ‘not white’ are distinguished, the error rate is surprisingly low. Best results are
obtained for a threshold of 0.4 which is 20% of the maximum value. Note that for the experiments
here the images of the USPS database were used with 256 graylevels within the range [0.0;2.0].

The results obtained with the Levenshtein-Moore distance are contained in Table 7.10. The weights
for substitution, insertion and deletion of pixels are all set to the same value here, as proposed in
[72]. The error rates presented here for tangent distance are somewhat higher than for the basic
classifier results (about 0.1% absolute on the average), because for speedup only the nearest 20
images with respect to the Euclidean distance were used for the computationally more expensive
distance computation of the Levenshtein-Moore distance and the same was done for the comparison
results with tangent distance (prefiltering, compare page 54). The gain obtained over Euclidean
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Table 7.10: Results for binarization and Levenshtein-Moore-Distance on USPS
Levenshtein +

Binarization | Euclidean dist. | Tangent dist. | Levenshtein dist. .
tangent dist.

Threshold | 1-NN KD 1-NN | KD | 1-NN KD 1-NN KD
0.4 6.0 5.5 4.5 4.2 6.0 5.4 5.0 4.8
0.7 6.5 6.1 5.0 4.7 6.3 5.9 5.0 4.7
1.0 7.8 7.3 5.6 5.4 7.2 6.9 5.0 4.7
1.3 8.5 8.4 6.4 6.2 7.6 7.5 5.8 5.6

distance by the application of the Levenshtein-Moore distance is only minimal for low binarization
thresholds and grows for higher thresholds. Surprisingly, if it used together with tangent distance,
results are impaired for a low threshold but improved for higher thresholds. If one can draw a
conclusion from these few experiments, it is that the proposed Levenshtein-Moore distance improves
results, but at a high computational cost, rendering it difficult to perform a large number of
experiments. What remains still open is the question of suitability for grayscaled images. The
extension to this case seems straightforward, but an additional parameter relating the weight of a
substitution to the weight of an insertion or deletion is needed.

7.1.8 Holographic Classification

In a few experiments the performance of the holographic classifier described in Section 2.5 was
investigated. On artificial training data with pattern length up to 200 consisting of binary vectors
drawn independently from a uniform distribution the algorithm performed reasonably well within
the operating range of parameters in correctly retrieving the pattern number for the training data.
For further investigation, tests on the USPS corpus were performed. Different transfer functions
to the complex domain were tested with the goal to achieve the best symmetry in the resulting
feature distribution, among them polynomial functions and histogram-based functions, but none of
the tested approaches seemed to provide outstanding performance, the obtained symmetry seemed
to be the important criterion, which was low in all of the tested methods after adjustment of
parameters. The experience was that it seems quite difficult to handle the algorithm, because of
the large number of open parameters for which no easy rules exist. Because of the long training
time for the hologram the basic validation results and parameters were determined using a subset
of the USPS training corpus consisting of the first 1000 patterns of the database. Using the gained
parameters the training was repeated on the complete corpus. To enlarge the pattern length (which
should have a certain minimum length, ideally greater than 12 times the number of given samples
according to KHAN) the images as well as the independent components of the outer products of
the feature vector with themselves were taken as feature vectors yielding 256 + &557 = 33152
features, not reaching the factor twelve (this may be nevertheless justified, since it is not necessary
to distinguish all patterns but only the corresponding classes). This large number of features of
course has a strong influence on the training time. Table 7.11 shows the obtained results for the
holographic classifier on the USPS database. If only the subset of the training set was used for
training, the best result is an improvement over the nearest neighbor classifier but still far from
the result for tangent distance based classification, which yields an error rate of 7.1% in that case.
For the complete database the classifier had an remaining error rate of 1.5% on the training data
and did not reach the result for nearest neighbor classification. Since the obtained results are
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Table 7.11: Results for holographic classifier on USPS

Number of training samples | Method description Error rate [%]
1000 binary class coding 13.4

unary class coding 9.4

unary class coding, FT features 11.7

Nearest Neighbor (Reference) 10.2

7291 unary class coding 6.0

Nearest Neighbor (Reference) 5.6
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Figure 7.11: Typical distances for different distance measures (USPS). Distance vs. Image shift
[pixels], Euclidean distance (top left), tangent distance (top right), Euler-Cauchy distance (bottom
left) and IDM distance (bottom right)

not completely out of the range of acceptable error rates, it might be interesting to examine the
possible strengths and weaknesses of this classifier more deeply.

Due to the limited time it was not possible to perform experiments with holographic classification
on the IRMA corpus, although this corpus might be better suited for the algorithm because of
larger feature vector dimension. Furthermore it was not possible to pursue further the usage of
Fourier transformed, complex features.

7.1.9 Behavior of Different Distance Measures

Figure 7.11 shows the dependency of different distance measures on image transformations, here a
horizontal shift of +/— seven pixels. One image from each class was chosen randomly as reference
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(the images are shown in Figure 7.12) and one image was shifted to 15 positions (here the digit
of class ‘five’ was used). Then the distances to all the images were computed, thus yielding zero
distance for a shift of zero pixels for the identical image. It can be seen that while Euclidean distance
would lead to the correct decision in this artificial setting for +/— two pixel shifts, tangent distance
degrades more gracefully and tolerates +/— three pixel shifts. The Euler-Cauchy approximation
of the manifold is able to keep the distance very small over a wide range of shifts for the identical
images, but at the same time the increased matching power leads to smaller distances to the
remaining images, too. Since in practice nearly identical images are seldomly encountered, this
might explain, why the Euler-Cauchy distance did not lead to better results on the USPS database.
Finally the distortion distance measure keeps the distance to the identical image at zero for a shift
of one pixel, as is expected for a region radius of one pixel, but at the same time allows so much
distortion that almost all images can be mapped well onto the reference image, therefore it is not
equipped with sufficient discriminative power, which is reflected in the low recognition rate for the
IDM with region size one.

7.2 Radiograph Categorization

This section is concerned with the results obtained during the experiments carried out on the IRMA
radiograph database described in Section 6.1.3. On this database a large number of experiments
was performed by THEINER [95], which already led to very good results. The experiments included
methods of invariant image object recognition like tangent distance* and image distortion model,
which improved classification significantly. As a summary of the results obtained in the experiments
for this work it may be stated that none of the additionally tested methods could improve the
previous results obtained by THEINER significantly. Only a thorough parameter optimization and
an improved tangent calculation for the image borders led to an improved performance from 8.6%
error rate [95] to 8.2%. In the following sections first the previously used methods will be described
shortly (following [23, 51]), followed by a description of the experiments and their results.

Figure 7.13 shows examples for the basic 1-NN classifier using Euclidean distance on the IRMA
database. With this basic setting an error rate of 18.1% is obtained, which can be significantly
reduced using various methods for invariant classification. For an overview of obtained results see
Tables 6.2 and 7.12. A leaving one out approach was adopted for all experiments because of the
small database, using N — 1 training samples in each step and one test sample, while using the
arithmetic average over the IV obtained results as total result.

4in cooperation with of the author of this work
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Figure 7.13: Examples for Nearest Neighbor recognition on the IRMA database. First image:
test pattern, following: best references from each class in descending order. Top 4 rows: correct
classification, lower 3 rows: incorrect classification. (class numbers: 0 = ‘abdomen’, 1 = ‘limbs’, 2
= ‘breast’, 3 = ‘skull’, 4 = ‘chest’, 5 = ‘spine’)

7.2.1 Previous Results

For the experiments, the radiographs were scaled down to a standard size of 32 x 32 pixels. This can
be done without a significant change in classification error rate, but leads to a considerable system
speedup. Computing a simple 1-NN on the radiographs with a size of 320 x 320 pixels yielded a
classification error of 18.0%, requiring about 30 CPU seconds on a 500MHz Digital ALPHA CPU
to classify a single image. Downscaling the images to the proposed size of 32 x 32 pixels, an error
rate of 18.1% was obtained, requiring about 0.4 CPU seconds.

Having chosen the image size, single-sided tangent distance was used for radiograph classification.
This reduced the KD error rate from 16.4% to 14.8%. Then experiments were started with the
image distortion model, using the cost function C;j;;; = 0. With an error rate of 14.7% the result
of the distortion model is slightly better than that obtained with tangent distance. In another
experiment it was tested whether the gains of both approaches were additive. Indeed, combining
both distance measures (by computing IDM distance of the previously tangent-registered images)
reduced the error rate from 14.8% to 12.5%. Figure 7.14 shows the achieved error rates with
respect to the size of a square neighborhood R of dimension (2r + 1) x (2r 4 1). The best result
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Figure 7.14: Error rates for distorted tangent distance with respect to size of neighborhood Region,
without local thresholding

of 12.5% was obtained using r = 0.7 (using linear interpolation between pixels).> Observing that
the maximum contribution of a pixel to any of the used distance measures is 255 - 255 = 65025
times greater for the maximum difference than for the minimum difference, as the radiographs
are 256-grayscale images. Thus, a single pixel may have a significant contribution to the total
distance, so that a few distorted pixels (as caused by noise or changing scribor position) can
lead to a misclassification. If the maximum contribution of a single squared pixel difference was
restricted in the experiments (‘local thresholding’ see page 110), to a maximum value this effect
can be compensated and the error rate could thus be further reduced to 10.3%. Analyzing the
remaining errors it was found that many misclassifications could be easily avoided by taking into
consideration the original image aspect ratios (by downscaling the images to a standard size this
information was lost). To compensate for this an aspect ratio penalty term was introduced, based
on the squared difference in aspect ratio between the given image and the reference image. This
penalty term reduced the classification error from 10.3% to 8.9%. Then choosing Cjj;/j» to be
a weighted Euclidean distance between pixel positions the error rate was reduced from 8.9% to
8.6% (with the class-specific error rates ranging from 27.3% for ‘abdomen’ to 3.4% for ‘chest’).
This result could be improved only marginally by using the Euler-Cauchy distance measure not
justifying the additional amount of computation involved.

The use of cooccurrence matrices [36] is often considered to be helpful for content based medi-
cal image retrieval. However, the experiments on radiograph classification did not support this
thesis. In two experiments, global cooccurrence matrices were used for feature analysis within a
synergetic classifier [95] and within a kernel density based classifier. In both cases, it was not
possible to obtain classification error rates below 29%. Apparently, cooccurrence matrices do not
provide discriminative features for radiograph classification. This does not mean that they may
not be useful for the following IRMA processing steps, e.g. to detect tumors within a (previously
categorized) radiograph. In this case, cooccurrence matrices would be computed from small parts
of the image, not from the complete image.

In a domain like medical imaging, the thickness tangent loses its a priori nature and can be
replaced by a brightness tangent (here defined as a constant function over (i, j), compare page 49),
modeling different doses in x-ray imaging. This is reflected in the corresponding recognition rates

5See also page 112.
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Table 7.12: Comparison of results for IRMA database

Distance Measure Error Rate [%]

1-NN | KD | KD, threshold
Euclidean 18.0 | 16.4 14.2
TD 15.3 | 14.8 12.9
IDM 16.5 | 14.7 13.2
TD, IDM 14.7 | 13.2 11.7
TD (brightness), IDM | 13.5 | 12.9 10.3

and shows in comparison to the USPS results that the selection of tangents is task dependent.
Table 7.12 shows the results of different distance measures for the IRMA database, ‘brightness’
indicating that the tangent for line-thickness was replaced by the brightness tangent. The results
show, that in this domain thresholding is appropriate and the improvements of TD and IDM
are nearly additive. Combination of the two approaches was achieved here by replacing Euclidean
distance with distortion distance (4.50) in the last step of distance computation, when the optimum
coeflicients for the tangents are already known, which can be interpreted as a previous registration
of images.

7.2.2 Extended Experiments

In the following the experiments built upon the previously presented results are described, none of
which did result in a significant improvement of classification performance.

Since training data multiplication led to considerable improvements on the OCR databases, it was
a natural approach to try the same for the IRMA data as well. But unfortunately multiplication of
the training data using image shifts (one or two pixels in all possible directions of the 8- respectively
the 24-neighborhood) did not improve classification results here. The reason for this negative result
may be that image shifts are not the main source of variation in the radiographs contained in the
database, while they are a very important factor when digits are to be recognized.

On a different task, consisting of images of chairs, considerable improvements could be obtained
using the gradient of the images as additional features [18]. This raised the hope that this sort
of additional information per image grid point might improve classification results for the IRMA
data, too. But in none of the various experiments using gradient images as additional features,
improvements could be achieved. The gradient was computed using the Sobel operator or equiv-
alently the tangents for image shifts, since these are computed using a modified Sobel operator.
Even when applied to a basic result without use of tangent distance or IDM the performance was
not improved using the gradient information as feature.

A number of experiments were also performed concerning the distribution of the grayvalues in
the images. One idea is to enforce the full usage of the available grayvalue interval, possibly
accompanied by a spreading which changes the grayvalues such that a certain percentage of the
pixel values lies outside the allowed range and then is cut to fit the interval. This method is called
histogram stretching [65, p. 196]. Let g,... and g,.,;, denote the maximum and minimum grayvalue
in the allowed range and let x,... and x,,;, denote the maximum and minimum grayvalue in the
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image x, then each pixel of the image is transformed to the new image z’ by

. Tij — Tonin) (Gmax — Jmin) € 1
xj; = min {gmx, max {gmin, (i . )(_ T ey Gmin = 5 (€ = 1) (gmax — gmm)}} (7.2)

max

for some factor € usually chosen around 1.05. The effect of a different spreading function with a
low cutoff at both sides was tested, but is neglectable. The factor was tried in the range between
1.0 and 1.1 but did not influence classification results significantly, neither positive nor negatively.

In this context it should be mentioned that the different grayvalue histogram distribution is partly
accounted for by the usage of the constant brightness tangent, which can be derived from an
additive illumination model (derivation see page 49), and performed better than the tangent for
the multiplicative illumination model or a combination of both.

The usage of local thresholding, which induced significant improvements in radiograph categoriza-
tion is described by a piecewise defined function for the local distance:

d(z, p) = ZZ roear (T 1) (7.3)
where for squared Euclidean distance the local distance is the squared difference
igean, Bucriaenn (@) = [la — b]|? (7.4)
which is replaced by a piecewise defined function

lla — b||2, for ||a —b||? <t

7.5
t , for [la —b|> >t (7.5)

dlocal, thresholding(a7 b) = {

for some predefined threshold ¢ (respectively determined by cross-validation). One can now try to
find out if there maybe are better suited local distance functions, which for example are smoother
around the value ¢ (the above function is not differentiable at [la — b||*> = t). Several other
local distance functions, including polynomial and exponential functions were tested in various
experiments, but no improvements were obtained. This approach is quite common, for example
VASCONCELOS et al. write in [100] to the subject of thresholding in image classification that “It
is well known, that a few (maybe even one) outliers of high leverage are sufficient to throw mean
squared error estimators completely off-track.” and propose — similar to the approach taken here
— to substitute the square function by a functional, which “weighs large errors less heavily”, then
propose to use a thresholding function for that functional.

The aspect ratio of the radiographies had been used as additional feature, which increased clas-
sification performance considerably. The next step in this direction was then performed by also
taking into account the variances of the aspect ratios for the different classes. It showed that the
variances varied by almost two order of magnitudes, being lowest for class ‘breast’ and highest for
class ‘limbs’. The first result was promising, since the 1-NN error rate dropped below 9%, which
was the lowest rate obtained, but as in most other experiments the best error rate of 8.2% for the
kernel density classifier could not be improved.

A method was implemented to automatically detect multiply labeled images like the one shown in
Figure 7.15 by signalling images with (near) zero distance in leaving one out classification. But
after considering that the number of such images is fairly small they were left in the database in
order to retain comparability of different methods. It is not clear in which way the multiply labeled
images affect the error rate, since there are identical images in the same class (leading to correct
classification) as well as in different classes (leading to misclassification).
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Figure 7.15: Multiply labeled image, part of class ‘skull” as well as ‘spine’

7.2.3 Tangent Distance

Since tangent distance was already used fully implemented in the previously described experiments,
few additional experiments concerning tangent distance itself were carried out, which are described
in the following. In this context it might be interesting to mention that the downscaling of images
in combination with tangent distance can be compared to the multiresolution approach described
in [100]. The connection is that the restricted range of a few pixels which is inherent in tangent
distance modeling small transformations can be enlarged by using downscaled versions of the
images, possibly — though not here — over a set of scaling factors.

Some experiments were performed concerning the treatment of the tangents at the image border.
On the OCR database there exists a canonical extension of the picture, which is to imagine the
image continued outside the actual image with the background grayvalue. This allows to calculate a
meaningful gradient even on the image border and therefore meaningful tangents. Such a canonical
extension does not exist for the radiograph database. Therefore first experiments [95] were done
using a predefined border value or an extension with the same grayvalue as was encountered on
the image border. It was observed, though, that best performance was obtained by ignoring the
value of the tangents for the image border pixels. A further improvement was made during the
experiments for this work by assigning a weighting factor to the tangent elements at the image
border. It was found that with a weight value of about one third relative to the remaining pixels
best results were obtained and tangent performance could be improved by about 0.2% absolute
error rate.

There are at least four methods to be considered when thinking about treatment of the image
border [65, p. 203]:

(1) disregard border pixels (leads to shrinking respectively information loss)

(2) extrapolate (may lead to extrapolation errors)

(3) disregard parts of the convolution mask outside (may lead to discontinuities)

(4) use wrap-around (only if periodicity assumption is valid)

Method number four must be ruled out in this context while experiments favored method number
one over two and three. Best results were obtained by combining methods number one and three
in the way described above.
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7.2.4 Image Distortion Model

This section deals with the IDM in the context of the IRMA database and some experiments with
extensions to it. First consider again the interpolation argument concerning the IDM approach
for non integer region sizes. When looking at Figure 7.14 it can be observed that integer region
sizes correspond to local maxima of the error rate, as was pointed out before in connection with
the experiments on the USPS database (compare Figure 7.9). This can be attributed to the
inherent smoothing effect of the fractional IDM, which is calculated using linear interpolation.
The difference in this case to the previously considered one is, that for integer radius 1 the error
rate is significantly lower than for radius size 0, which is not true for USPS. This gain must
therefore be granted completely to the positive effects of the IDM, while for non integer radii the
gain is probably due to the effects of both IDM and smoothing. But the effects of smoothing in
this case are significantly lower than they are on USPS, which can be seen from the larger value
for the region radius for minimum error rate of 0.7 pixel, where a significant importance is placed
on the outside pixel (in comparison to 0.3 for USPS) and from the comparison results obtained by
using a smoothing prefilter. In the smoothing experiments carried out the maximum improvement
obtained by smoothing was never more than one third of the effect of IDM plus interpolation in
contrast to the USPS results, where the total improvement of the IDM could also be obtained by
just smoothing.

A number of experiments were performed with the aim to regularize the IDM vector field. By
that the array of displacement vectors is meant, which are the result of subtracting the position
of the observation image pixel from the one found to minimize the local IDM distance. That is
the IDM vector field v, , in a distance computation between = and p can be written as (compare
Equation (4.50))

Vg,u(i,J) = argmin {|[zs; — pijr || + Cijirjr } (7.6)

(i',5')ER:;
In the generalized model of Equation (4.59) the vector field is equal to the minimizing displacement
function f:
Vg, = arjgénfin{O(f) + Z lzij — g} (7.7)
i

Now it seems intuitive to restrict the set of possible displacement fields such that only “meaningful”
transformations are allowed. One approach that does this is tangent distance, which only allows
affine transformations. In contrast to this the basic IDM allows almost arbitrary transformations,
restricted only by the region size (compare Figure 4.14). In order to favor regular displacement
fields, different cost terms for irregularity were implemented and tested, but none of them improved
the best result obtained before. The proposed methods are based on optical flow [45] and pixel
fertility.

The first method tried was inspired by optical flow. Optical flow relies on the assumption that “the
apparent velocity of the brightness pattern varies smoothly almost everywhere in the image.” This
can be applied to the IDM, where two images are compared, which are supposed to be deformations
of each other. It was implemented by adding a distance term to the implied distance, representing
the deviation from a smooth optical flow. Ideally the overall distance should then be calculated
as a global minimum over all possible transformations, but in this work only experiments with a
multi-step algorithm were performed, first determining the vector field, then adding the cost term.
Since the optical flow constraint is equivalent to the minimization of the second partial derivatives
of the image velocities [45], the sum of these derivatives across the vector field was used as cost
term. For the computation of the discrete derivative the Laplace operator was used, that is the
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Figure 7.16: Visualization of the IDM displacement vector field and the pixel fertility (represented
by box size) for two images of class chest. Upper row: with prior application of tangent registration,
lower row: without usage of tangent registration. (Left image used as observation, right image as
reference. Each pixel in the observation must be “explained” by the reference in this case.)

displacement fields were convolved with the mask (-1, 2, -1) in both directions and for each of
the two vector components. Then the sum of absolute values was used as cost term. Another
experiment was carried out using the discrete measure of regularity for optical flow from [42]. The
cost term was added to the precomputed distance measure after multiplication with a weighting
factor. In none of the experiments any improvement for the best result was achieved.

Another way to achieve a preference of regular IDM vector fields is to determine the pixel fertility
for each pixel in the reference and to define a cost term for a deviation from 1. The pixel fertility is
defined as the number of times the grayvalue was used to explain a grayvalue in the observation. In
the experiments a Euclidean cost term was used with varying weight, but its use did not improve
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Figure 7.17: KD error rate (bars indicate ranges for different variance factors) vs. weighting of
IDM side. 0 refers to explanation of the observation, 1 to explanation of the reference, values in
between to linear mixture of distances.

classification performance for the KD classifier. Only small improvements (of about 0.4% absolute)
were observed for the 1-NN classifier.

Figure 7.16 shows two visualizations of the IDM vector field and the pixel fertility distribution for
region radius 1 pixel. The flow field is very inhomogeneous, which is not surprising for these two
randomly selected images of the same class, which differ widely. In the upper row the flow field is
shown for previous use of tangent registration, while the lower row shows the same images without
prior registration. Since the images are very different in their pixel representations, the fields do
not differ greatly, but some differences can be noticed. The average absolute difference from 1 of
the pixel fertility is 0.87 for the upper row and 0.90 for the lower row, which might be an indicator,
that with application of tangents, the IDM gets more homogeneous.

Another approach is to use the gradient as additional hint on which pixel from the region to use
as matching pixel. When the minimization over the region corresponding to a pixel in the image
is performed, the gradient difference can be taken into account. This is equivalent to using the
gradient as additional feature, which does not improve classification, as mentioned above. But
one can use the gradient information only as hint on the best matching pixel and then take the
squared grayvalue difference as distance contribution. This is only an additional restriction on the
IDM vector field distribution and does not affect the features used in the distance computation.
Unfortunately this approach did not improve classification results on the IRMA database, either,
at least for the best KD classification result. For the 1-NN classifier, small improvements of about
0.2% absolute could be observed

Figure 7.17 shows the results of experiments for the usage of the image distortion model on the
side of the references and mixtures of both differences. The results show, that on this data it is
best to keep all pixels in the observation and explain each one with a value from the reference.
Linear interpolation of the distances did not improve the one sided approach. One could think
about other ways of combining the two approaches, especially in combination with restriction of
pixel fertility or with restricting the fraction of pixels to be neglected in each image, involving a
minimization including all cost terms simultaneously. These approaches would require a complete
restructuring of the used algorithms, but might be interesting to try, although experience with the
additions lets a significant improvement seem rather unlikely on this database.
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Figure 7.18: Typical distances for different distance measures (IRMA). Distance vs. Image shift
[pixels], Euclidean distance (top left), tangent distance (top right), Euler-Cauchy distance (bottom
left) and IDM distance (bottom right)

Another possible explanation for the better performance of the IDM when keeping all observation
pixels in this context is, that it was used in combination with tangent distance on the side of
the observation, that is tangent deformation was used on the side of the observation and IDM
deformation was used on the side of the reference.

The gradient based image distortion model (Equation (4.55)) did not improve classification results
on the IRMA database, neither with nor without tangent distance. This result maps well with the
lack of a priori suitability of the thickness tangent in this domain.

7.2.5 Behavior of Different Distance Measures

Figure 7.18 shows the dependency of different distance measures on image transformations, here
a horizontal shift of 4+/— seven pixels for images from the IRMA database. One image from
each of the six classes was randomly chosen and one of these was chosen as reference image (here
from the class ‘abdomen’). The images are shown in Figure 7.19. Then the distances to all the
images were computed, thus yielding zero distance for a shift of zero pixels for the identical image.
If compared to the similar graphs for the USPS database on page 105, some differences can be
observed. The most prominent difference is, that here tangent distance and distortion distance
with region radius one behave very similarly. This corresponds well with the experience, that both
invariant distance measures lead to improvements in classification of about the same amount. The
Euler-Cauchy approximation of the manifold is able to keep the distance very small over a wide
range of shifts for the identical images, but at the same time the increased matching power leads to
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Figure 7.19: Images used for the distance graphs

smaller distances to the remaining images, too, although not as much as for the USPS images. On
this data the Euler-Cauchy distance seems to provide better discriminating power than on USPS,
and this again is reflected in the fact that it was able to improve classification marginally (by
about 0.2% absolute improvement in error rate), but not worth the considerable increase in time
consumption. From the diagrams it can not be seen that Euclidean distance performs significantly
worse than tangent distance in this case.

7.2.6 Generalization Test

After adjusting all parameters on the database consisting of 1617 images a generalization test
was performed on a set of 332 previously unseen radiographs®. Using the values determined
by the leaving-one-out strategy, the algorithm misclassified 30 out of the 332 new radiographs
(corresponding to an error rate of 9.0%) with the training set now consisting of 1617 images. This
means that an adequate generalization was achieved, since the error rate on the new set does not
deviate much from the leaving-one-out training set error rate of 8.2%

7.3 Task Dependency

During the experiments performed on the two different classification tasks optical character recog-
nition and radiograph categorization it became clear (which is by no means a spectacularly new
finding) that the performance of the different distance measures and extensions depends very much
on the specific task [51]. The property that there is no model that is globally optimal, but the
performance depends on the adequateness for the specific data is sometimes referred to as “no free
lunch”-property [69]. Towards this issue in relation to the task of OCR in [63] it is stated that
“The performance of the local subspace method is dependent on the nature and density of the data
in the Bayesian class border area.” In the following some salient task dependencies concerning the
two tasks studied here are given.

One of the main differences between the two tasks is that the image distortion model leads to
considerable improvements in classification performance on the IRMA database while this is not
true for the USPS database. One demonstrative reason for this difference may be that it is easy
to “erase” a line in an image representing a handwritten digit completely using the IDM when
this line is only one or two pixels wide. If the line distinguishes two numerals from each other, as

6Thanks go to Thomas Theiner for implementing the used visualization tool.
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for example with the digits ‘3" and ‘8’ or with ‘4’ and ‘9’, this is enough to lead the classifier off
track. This is also reflected in the distance graphs of Figures 7.11 and 7.18, which illustrate the
differences in the distance measures.

Another prominent difference in the classification results is, that data multiplication led to a
significant improvement in OCR, while no gain could be observed for the radiograph database.
One possible explanation for this is, that image shifts may not be the main source of variation in
the IRMA corpus.

Among the other differences one should mention the higher importance of smoothing on the OCR
task and the better performance of the Euler-Cauchy approximation for radiograph categorization.
Furthermore, the lack of a priori explanation for the line thickness transformation on the radio-
graph corpus matches well with the experiments and while the brightness tangent did not improve
results for OCR it did for the radiographs. Another difference, reflected in results for the tangent
estimation at the image border, is that for the numeral images there exists a canonical extension
of the images with the background graylevel, which is not the case for radiographies.

Finally it should be observed that the usage of tangent distance led to considerable improvements
in both tasks, which is probably due to the fact that the considered transformations (affine trans-
formations and line thickness respectively brightness) are an important source of variation in the
image data used.
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Chapter 8

Conclusion and Perspective

This planet has - or rather had - a problem, which was this: most of
the people on it were unhappy for pretty much of the time. Many so-
lutions were suggested for this problem, but most of these were largely
concerned with the movements of small green pieces of paper, which
s odd because on the whole it wasn’t the small green pieces of paper

that were unhappy.
[4]

Conclusion

In this work, different methods to achieve invariance in image object recognition have been pre-
sented, theoretically investigated, and experimentally evaluated. A strong emphasis was placed on
the concept of tangent distance and related invariant distance measures like the image distortion
model.

The theoretical results obtained allow insight into the statistical properties important for image
object recognition. As a by-product, a novel model for the description of transformation-manifolds
using linear difference equations was obtained. More importantly, a new probabilistic interpretation
of tangent distance was presented and it was shown that the tangent distance model can be derived
from a statistical model of intra-class variability. Within this model, different possible settings
were examined and the corresponding distance measures (as well as a combination of these) were
inferred. It was also shown how domain knowledge about variability can be used to allow a more
reliable parameter estimation in the context of statistical modeling. Furthermore, a novel approach
for using structured covariance matrices for image object recognition within a statistical classifier
based on the concept of pixel neighborhoods was motivated and described. Properties of the
resulting distance measure and its relation to tangent distance were investigated. These distance
measures may be helpful in the design of classification algorithms if this type of variation is present
in the data.

Tangent distance and related approaches are apt to model variability in image data successfully.
This was proven by implementing tangent distance and the described image distortion model for
use within a statistical pattern recognition system. Tangent distance effectively compensates vari-
ation resulting from small global transformations, for example affine, projective, line-thickness or
brightness transformations, while the image distortion model can compensate small local transfor-

119
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mations of the image. The effect of virtual data creation for the training and the testing phase
was observed to be very important for the performance of the implemented classifiers. Using a
kernel density based Bayesian classifier, excellent results were obtained on the USPS handwritten
digits recognition task. The result of 2.2% error rate is the best known result so far. For the NIST
digit recognition database a state of the art classification performance of 1.0% error rate could
be obtained using the implemented classifier. On the IRMA radiograph database the obtained
error rate of 8.2% is the best known result, yet only few results for competing methods exist so
far. The results obtained with invariant distance measures are better than those obtained using
invariant features, at least on the regarded data sets [77]. This supports the thesis that it is bet-
ter to incorporate things like feature extraction, determination of transformation parameters and
classification into a single classification step, instead of regarding them separately.

From the experimental results it can be deduced that

e incorporating domain knowledge about invariant transformations into a classifier significantly
improves its performance,

e tangent distance provides an effective means to model pattern variance in digit and radio-
graph recognition,

e the performance of different invariant distance measures and of combinations of these depends
on the given task,

e the image distortion model can improve classification considerably for radiograph recognition,
but not for optical character recognition,

e it is possible to successfully use estimated derivatives of variation for the modeling of pattern
distributions,

e the obtained theoretical results are supported by the experimental results,

e the use of virtual training and test data is a valuable tool for improving classification perfor-

mance,

e using Levenshtein-Moore distance improves classification results slightly compared to Eu-
clidean distance, but at the cost of great computational complexity,

An important issue is the task dependency of the different approaches. It is well known that there
is no model that is globally optimal, but that the performance depends on the adequateness for
the specific data. In the experiments it could be observed that the performance of the different
distance measures and extensions heavily depends on the particular task. The image distortion
model performs very well on the considered radiograph data, but does not lead to improvements
for handwritten digit recognition. On the other hand, data multiplication leads to significantly
increased performance for character recognition, but does not enhance the classification of radio-
graphs. Yet, tangent distance performs very well on both tasks considered, which is probably due
to the appropriate modeling of small affine transformations, which are a source of variations in
the three considered databases. A difference observed was that the line thickness transformation
is suitable for optical characters, while it looses its a priori nature on x-ray images and is better
replaced by a brightness transformation. In the comparison of different distance measures a gen-
eral observation is that concerning the matching power there exists a tradeoff between improved
matching of correct samples and restricted matching of incorrect samples. Increasing the allowed
variation always leads to better alignment of patterns, both towards correct and towards incorrect
reference images, so the crucial point is to find the ‘right’ model of variation.
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Perspective

At this point of the present work, some questions remain open and many ideas need still to be
investigated. One major point is that basically all considerations presented here are based on the
maximum likelihood approach, i.e. each class is handled separately in the models. Future work
should include the investigation of discriminative training in this context, taking into account the
information of competing classes and aiming at optimizing class separability. One such approach
that may be combined with local tangent information was presented in [39], where the authors
apply a local linear discriminant analysis to obtain a metric that locally takes into account the
concurrent classes. Since there are many connections to principal component analysis in this work,
discriminative training might lead from PCA to LDA in some applications, possibly improving
discrimination between classes. On the other hand, other researchers give arguments in favor
of the relative density approach compared to the discriminative approach [43] or state “We are
currently exploring [...] discriminative versus non-discriminative learning in a variety of different
contexts. Our preliminary experience is that we do not see any improvement, but the jury is still
out.” [37]

A different application field of the methods described here can be found in the area of automatic
image indexing by object recognition [17]. This is already a topic of research [35] and methods
include combinations of template matching and probability distribution via eigenspace decomposi-
tion, with possible speedup by using the fast Fourier transform for the convolutions corresponding
to eigenspace composition leading to the local likelihood [71]. In this context, it is an important
aspect that segmentation should not be a process separated from recognition in object detection,
but that the two should form a whole (which is suggested by experiences from continuous speech
recognition). Also, the separation can only lead to more errors, since errors in early steps of a
multi-step algorithm usually cannot be corrected in later steps.

The same argument probably holds for the use of regularity constraints in the image distortion
model. In this work, the determination of the IDM vector field and its evaluation using optical flow
and pixel fertility were treated as separate step in the calculation of the distance. This approach
did not yield any performance increase in the experiments carried out on the radiograph database.
Also the calculation of tangent distance and image distortion model were treated as separate steps,
but here considerable improvements could be obtained. It is very likely that the joint minimization
of all the distance terms involved — tangent distance, distortion model, regularity constraints and
possibly other models — will lead to better results. It remains an interesting task to develop the
necessary algorithms for this minimization process.

Some other open questions are

e if the use of estimated derivatives of variation can be successfully applied to other domains,
like speech recognition, where the transformations of the patterns are not known a priori,

e if the calculation of the exact manifold representation is feasible and if so, if it leads to
improvements in classification,

e if the combination of the local subspace approach for estimated tangents can be successfully
combined with the a priori tangents (compare Equation (5.28)) to yield improvements in
classification,

e if higher order covariance structures respectively larger clique sizes can be effectively modeled
to obtain a better description of pixel dependencies in images (despite the increasing number
of free model parameters),
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e if the solutions proposed in [78] can be used to efficiently solve the equation systems involved
in the structured covariance matrix model,

e if the extension of the Levenshtein-Moore distance to graylevel images can be used to improve
classification results and how it performs on tasks other than optical character recognition,

e how the presented approaches can be used to model image sequences, e.g. using statistical
methods in video indexing like temporal Gibbs random fields [29].
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Appendix A

Complements

A.1 Further Experiments

“And are you not,” said Fook leaning anziously forward, “a greater
analyst than the Googleplex Star Thinker in the Seventh Galaxy of
Light and Ingenuity which can calculate the trajectory of every single
dust particle throughout a five-week Dangrabad Beta sand blizzard?”
“A five-week sand blizzard?” said Deep Thought haughtily. “You ask
this of me who have contemplated the very vectors of the atoms in the
Big Bang itself? Molest me not with this pocket calculator stuff.”

1]

This section briefly describes some further results obtained during the experiments carried out for

this work.

Data Multiplication via Thinning

Since data multiplication using image shifts led to significant improvements in classification per-
formance, it was also tested, if an improvement could be gained by using thinning, which is a
morphological operator defined for binary images [65, pp. 223ff].! The images were binarized with
a given threshold value, then thinning was applied to yield virtual training data. The obtained
results are shown in Table A.1. It can be observed that the results are significantly worse than the
reference of 3.4% respectively 3.3% for simple training data. This result complies with the bina-
rization experience (see page 103), which shows that the best result on binary images is obtained

1The used software for the thinning was implemented by Mark Oliver Giild.

Table A.1: Experiments with multiplication via thinning
Binarization Threshold [% of max] ‘ ER 1-NN [%)] ‘ ER KD [%)] ‘

25 3.8 3.7
50 4.1 4.0
75 5.4 5.4
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for low thresholds, leading to the ‘thickest’ images, which explains that thinning does not lead to

improvements.

Restricting the Movement in M

A few experiments were conducted to investigate the effect of the restriction of the movement of
the projected point in the tangent subspace in tangent distance. this corresponds to a setting
of v < oo in Equation (5.6). For that, the optimal parameters o were determined, that is, the
projection into the tangent subspace was performed. Then, the projection was recalculated using

the corresponding new parameter

’ 72

o = T2 e
No gains in classification performance could be obtained using different values for . This is in
compliance with the statement of HASTIE & SIMARD, who observed that it was “unnecessary to
restrict the transformations to be local, since the degradation of the linear approximation far from
the origin produced images that were extremely distorted.” [37] Furthermore, “in high-dimensional
image spaces, it is unlikely that images will have large projections within the tangent space and
small projections off it.” [43]

Using Squared /,-Norms

As few maybe even one large differences in pixel values can mislead classifiers based on squared
error distances (see e.g. [100]), it can be advisable to introduce a local threshold which limits
the maximum contribution of a single pixel to the distance between two images. (Note that this
thresholding implies a minimum probability for any observation with respect to any reference and
therefore the probability density function is not normalizable any more.) This is justified by a
priori domain knowledge, e.g. when it is known that the patterns may be subject to artifacts that
do not affect class-membership, like noise or changing scribor? position in radiographs. On the
other hand, when looking at relatively small images of digits, one notices that e.g. changing only a
few pixels can be significant for discriminating between the handwritten digits ‘4’ and ‘9’. Here it
can be useful to enlarge the contribution of a single pixel difference generalizing the used norm and
use a squared [,-norm (see Equation (2.15)) instead of the squared Euclidean norm with values
p > 2. Fig. A.1 shows the obtained error rate versus p for the kernel density based tangent distance
classifier, without extended data. Figure A.2 shows two examples, which visualize the positive
effect an increased value for p can have on classification of images of handwritten digits. In both
cases only few pixels are different between the test image and the incorrect reference. The two
images were correctly classified using p = 3, but incorrectly classified with p = 2. The higher value
for p was especially effective for 15 times multiplied training data with tangent approximation with
obtained error rates of 3.4% (p = 2) respectively 3.1% (p = 3). The use of higher values for p did
not lead to an improvement of the best single classifier, but the classifier mentioned above was
used in the bagging experiment which obtained the best overall result.

Reducing the Training Set

There are several methods known for reducing the number of samples in the training set. Among
them are the editing and condensing techniques [25, 32, pp. 358ff]. In editing samples of the training

2Scribor refers to the area in a radiograph where patient and examination data is printed.
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Figure A.1: Error rate of basic KD classifier using tangent distance on USPS (ordinate: p, abscissa:
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Figure A.2: Example for two digits that were correctly classified using p = 3, but incorrectly
classified with p = 2. (left: test image, center: best fitting reference, right: best fitting reference
of the correct class)

set that are misclassified using a separate part of the training data as references (partitioning the
training set) are discarded. In condensing the training set is built up from the empty set by
adding more training samples in the case they cannot be correctly classified by the existing ones.
This leads to a systematic removal of the ineffective samples. These methods can be applied to
reduce the number of samples (for speedup) or to improve the classification by finding samples
that lead to misclassification rather than to correct classification. The latter was the purpose
of the experiment performed. In the first variant of the editing technique, the training set was
classified using a leaving one out approach and the number of times were counted, that each sample
led to a correct classification respectively a misclassification of another sample. A given training
sample was then rejected, that is removed from the training set, if the number of times it led to a
misclassification exceeded the number of times it led to a correct classification in a 1-NN classifier.
This method yielded the set of ‘bad’ training samples shown in Figure A.3. Then the approach was
extended to take into account not only the number of times a given sample led to misclassifications,
but the relative proportion of probability weight in the summation for the KD conditional density.
This approach led to a much larger set of ‘bad’ training samples shown in Figure A.4. Finally, from
the two sets four seemingly ‘very bad’ examples were chosen, shown in Figure A.5. Then, the
training set was reduced using each of the shown reduction sets, but the approach did not improve
classification results in any of the experiments carried out, except for the 1-NN performance with
the hand selected reduction set, which gave a 0.1% decrease in error rate. For the kernel density
based classifier no improvement was obtained. This may be seen as an indication for the fact that
a kernel density based classifier can overcome the influence of ‘bad’ training samples, because the
decision of the classifier is not based on only one sample, as is the case for the 1-NN classifier. A
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Figure A.3: Automatically constructed reduction set 1

Table A.2: Confusion Matrix for best single classifier result on USPS corpus

Test pattern Classified as

from class o] 1] 2] 3] 4] 5] 6] 7] 8] 9| %
0 356 0 0 0 0 3 0 0 0 0 | 359
1 0 | 260 0 0 2 0 1 1 0 0 | 264
2 1 1| 192 1 1 1 0 1 0 0| 198
3 2 0 0 | 158 0 4 0 0 0 2 | 166
4 0 2 0 0| 191 1 0 1 0 5 | 200
5 1 1 1 1 0| 155 0 0 0 1| 160
6 0 0 0 0 0 1| 169 0 0 0| 170
7 0 1 1 0 3 0 0| 142 0 0| 147
8 3 1 1 0 0 1 0 0 | 160 0 | 166
9 0 0 0 0 0 1 0 0 0| 176 | 177

possible application of the described method could be to automatically construct sets of possible

label mistakes, which can then be reconsidered by an expert, reducing the number of samples that

need to be looked at.

Confusion Matrix for Best Single Classifier on USPS

Table A.2 shows the confusion matrix for the USPS database for the best single KD classifier
using tangent distance and nine times multiplied training and test data constructed with image

shifts. It can be seen that most mistakes were made for the interpretation of ‘4’ as ‘9’ followed by

interpretation of ‘3’ as ‘5’.

A.2 Implementation

Tricia had been quite impressed with herself, but also very impressed
with the computer system she was working on. Using a computer
workstation on Farth the task would probably have taken a year or so

[5]

of programming.
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Figure A.4: Automatically constructed reduction set 2
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Figure A.5: Four training examples manually chosen for reducing from the automatically con-
structed sets

This section of the appendix will briefly summarize the different programs developed and modified
in the course of this work. The programs were written in the C programming language and compiled
and executed on DEC Alpha and Intel Pentium processors. The programming received a lot of
help from Mark Oliver Giild and Alexander Cramer, who among other things provided the software
for classifier combination. Moreover some procedures from [79] were used, e.g. jacobi.c and
dsvdcmp. c for eigenvalue and eigenvector computation as well as computation of orthonormalized
subspaces. For some rather mathematical problems the Maple environment was very helpful,
e.g. for symmetry analysis for holographic classification, and for considerations concerning the



136 APPENDIX A. COMPLEMENTS

bilinear equation system and the linear difference (and differential) equations in manifold modeling.

Some typical time requirements on the mentioned processors for the calculation of SVD and tan-
gents are given here for the USPS database. For single sided Tangent distance tangent calculation
consumed about 5% of the total time (with about 0.2 ms per image) and SVD required about 60%
of the total time and about 2.5 ms per orthonormalization of image tangent subspace performed.
For double sided tangent distance an SVD needs to be performed for each distance computation
separately (or equivalently a least squares problem must be solved) and the dimension of the sub-
space is doubled. One SVD call consumed about 9 ms time and the total percentage of the time
needed for calls of the SVD was about 84%.

In the following some of the developed programs are listed with a brief description.

makeholo.c constructs a hologram from a given dataset with class labels
decode.c classifies a set of test patterns given a hologram
tangent.c calculates the tangents to a set of images

nn_tangent.c performs NN or KD classification using tangents or structured covariance matrices
(lots of parameters)

nn_tangent_svdgesamt.c for the double sided tangent distance a seperate clasifier was developed
centroid.c calculates the different centroid / tangent subspace models for a given set of images
leven2D.c calculates the 2D Levenshtein distance following [72]

inflate.c inflates covariance matrices for smaller size images consistently for use with larger
images

four_norm.c calculates an image normalization in the Fourier domain by setting the imaginary
phases of the lowest frequencies to zero consistently

labelfehler.c determines training set reduction sets based on different criteria

nni.c IRMA classification program based on nn_tangent.c and the works of Thomas Theiner for
[95] (lots of parameters added)

A.3 Complement to the Proof in Section 5.1.1

“Simple. I got very bored and depressed, so I went and plugged myself
in to its external computer feed. I talked to the computer at great
length and explained my view of the Universe to it,” said Marvin.
“And what happened?” pressed Ford.
“It committed suicide,” said Marvin and stalked off back to the Heart
of Gold.

[1]

The results obtained in 5.1.1 can also be shown without using maximum approximation. Comments

on the calculations are given there.

p(aly) = / p(z, o) dov
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1 _ 1
Hl VQW(ﬁ‘HMTZ L)

1 ! 1 Ty -1 (R
exp (== [(n—o)"S (u—a) - -
/2" \/(2m) P3| ( 2 ( Zl (5 + 1B )
1 Ty —1, \—%
[LG +w =)
The last few steps made use of the properties of the normal distribution. In the last expression it

can be seen that only the exponential term exp(- - -) depends on x such that the results arrived at

without maximum approximation are essentially the same as those in 5.1.1.



Index

6-9-problem, 35

A priori knowledge, 16
Appearance based pattern recognition, 15, 34
Artificial neural net (ANN), 20, 23, 29

Bayes’ rule, 20
Bilinear equation system, 74, 100

Central limit theorem, 65
Centroid, 92

Classifier combination, 43, 88
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Fourier-Mellin transform, 38
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Levenshtein-Moore distance, 58, 102

Linear discriminant analysis (LDA), 28, 82,
84

Linear model, 66

Local correlation, 73

Local subspace classifier (LSC), 69
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Manifold, 40
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tance

Nearest neighbor (NN), 16, 22, 68
NIST database, 79

No free lunch, 23, 116

Normal distribution, 22, 66
Normalization, 35

Optical character recognition (OCR), 17, 77,
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