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Abstract. Statistical classification using tangent vectors and classifi-
cation based on local features are two successful methods for various
image recognition problems. These two approaches tolerate global and
local transformations of the images, respectively. Tangent vectors can be
used to obtain global invariance with respect to small affine transfor-
mations and line thickness, for example. On the other hand, a classifier
based on local representations admits the distortion of parts of the im-
age. From these properties, a combination of the two approaches seems
very likely to improve on the results of the individual approaches. In this
paper, we show the benefits of this combination by applying it to the well
known USPS handwritten digits recognition task. An error rate of 2.0%
is obtained, which is the best result published so far for this dataset.

1 Introduction

Transformation tolerance is a very important aspect in the classification of hand-
written digits because of individual writing styles, pen properties and clutter.
Among the relevant transformations we can distinguish the two cases of

— global transformations of the image, e.g. scale, rotation, slant, and
— local transformations of the image, e.g. clutter or missing parts.

These types of transformations do not change the class of the object present in
the image and therefore we are interested in classifiers that can tolerate these
changes, in order to improve classification accuracy. There exists a variety of ways
to achieve invariance or transformation tolerance of a classifier, including e.g.
normalization, extraction of invariant features and invariant distance measures.

In this work, we present two classification methods that are particularly
suitable for the two types of transformations: a statistical classifier using tan-
gent vectors for global invariance and a classifier based on the nearest neighbor



technique and local representations of the image, which tolerates local changes.
Because these two methods deal with different types of transformations it seems
especially useful to combine the results of the classifiers.

The combination of the classifiers is evaluated on the well known US Postal
Service database (USPS), which contains segmented handwritten digits from
US zip codes. There are many results for different classifiers available on this
database and the combined approach presented here achieves an error rate of
2.0% on the test set, which is the best result reported so far.

2 The statistical classifier using tangent distance

First, we will describe the statistical classifier used. To classify an observation
2 € RP, we use the Bayesian decision rule

v r(w) = sagmas {p(k) - ple)}.

Here, p(k) is the a priori probability of class k, p(z|k) is the class conditional
probability for the observation z given class k and r(z) is the decision of the
classifier. This decision rule is known to be optimal with respect to the expected
number of classification errors if the required distributions are known [1]. How-
ever, as neither p(k) nor p(x|k) are known in practical situations, it is necessary
to choose models for the respective distributions and estimate their parameters
using the training data. The class conditional probabilities are modeled using
kernel densities in the experiments, which can be regarded as an extreme case of
a mixture density model, since each training sample is interpreted as the center
of a Gaussian distribution:

Ny,
1

n=1

where N is the number of training samples of class k, zj, denotes the n-th
reference pattern of class k and here we assume X = ao?I, i.e. we use variance
pooling over classes and dimensions and apply a factor « to determine the kernel
width.

2.1 Overview of tangent distance

In this section, we first give an overview of an invariant distance measure, called
tangent distance (TD), which was introduced in [2]. In the following section, we
will then show how it can be effectively integrated into the statistical classifier
presented above. An invariant distance measure ideally takes into account trans-
formations of the patterns, yielding small values for patterns which mostly differ
by a transformation that does not change class-membership.

Let 2 € R” be a pattern and ¢(x,«) denote a transformation of x that
depends on a parameter L-tuple o € IRL, where we assume that ¢ does not



Fig.1. Illustration of the Euclidean distance between an observation z and a refer-
ence p (dashed line) in comparison to the distance between the corresponding manifolds
(plain line). The tangent approximation of the manifold of the reference and the corre-
sponding (one-sided) tangent distance is depicted by the thin line and the dotted line,
respectively.

affect class membership (for small «). The set of all transformed patterns now
is a manifold M, = {t(ac7 a) @ a€ IRL} C IR” in pattern space. The distance
between two patterns can then be defined as the minimum distance between the
manifold M, of the pattern x and the manifold M, of a class specific prototype
pattern p. This manifold distance is truly invariant with respect to the regarded
transformations (cf. Fig. 1). However, the distance calculation between manifolds
is a hard non-linear optimization problem in general. These manifolds can be
approximated by a tangent subspace M. The tangent vectors x; that span the
subspace are the partial derivatives of the transformation ¢ with respect to the
parameters oy (I = 1,...,L), i.e. z; = 0t(x,a)/Ocy. Thus, the transformation
t(x, ) can be approximated using a Taylor expansion at o = 0:

L L
tz,a) =z + Y aqz; + >, 0(a?)
=1 =1

The set of points consisting of the linear combinations of the tangent vectors x;
added to x forms the tangent subspace M., a first-order approximation of M.:

e L
My ={z+ Y oy : ozelRL}CIRD
=1

Using the linear approximation ./\//Yx has the advantage that distance calculations
are equivalent to the solution of linear least square problems or equivalently
projections into subspaces, which are computationally inexpensive operations.
The approximation is valid for small values of «, which nevertheless is sufficient
in many applications, as Fig. 2 shows for examples of USPS data. These examples
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Fig. 2. Example of first-order approximation of affine transformations and line thick-
ness. (Left to right: original image, + horizontal translation, + vertical translation, +
rotation, + scale, +axis deformation, + diagonal deformation, + line thickness)



illustrate the advantage of TD over other distance measures, as the depicted
patterns all lie in the same subspace and can therefore be represented by one
prototype and the corresponding tangent vectors. The TD between the original
image and any of the transformations is therefore zero, while the Euclidean
distance is significantly greater than zero. Using the squared Euclidean norm,
the TD is defined as:

L L
dos(z,p) = min {[[(x+ 3 ) — (u+ X Buya)l|*}
a,BER =1 =1

This distance measure is also known as two-sided tangent distance (2S) [1]. To
reduce the effort for determining dog(z, ) it may be convenient to restrict the
tangent subspaces to the derivatives of the reference (or the observation). The
resulting distance measure is called one-sided tangent distance.

2.2 Integration into the statistical approach

The considerations presented above are based on the Euclidean distance, but
equally apply when using the Mahalanobis distance in a statistical framework.
The result of the integration of one-sided tangent distance into the densities is
a modification of the covariance matrix of each kernel in the kernel densities [3]:

L
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Here, the parameter v denotes the variance of the coefficients a in the tangent
subspace. The resulting distances (i.e. the values of the exponent in the Gaussian
distribution) approach the conventional Mahalanobis distance for v — 0 and the
TD for v — oo. Thus, the incorporation of tangent vectors adds a corrective term
to the Mahalanobis distance that only affects the covariance matrix which can
be interpreted as structuring Xy,.

2.3 Virtual data

In order to obtain a better approximation of p(z|k), the domain knowledge
about invariance can be used to enrich the training set with shifted copies of
the given training data. In the experiments displacements of one pixel in eight
directions were used. Although the tangent distance should already compensate
for shifts of that amount, this approach still leads to improvements, as the shift
is a transformation following the true manifold, whereas the tangents are a linear
approximation. As it is possible to use the knowledge about invariance for the
training data by applying both tangent distance and explicit shift, this is true
for the test data as well. The resulting method is called wvirtual test sample
method [4]. When classifying a given image, shifted versions of the image are
generated and independently classified. The overall result is then obtained by
combining the individual results using the sum rule.



3 The nearest neighbor classifier using local features

As the second method, the nearest neighbor (NN) paradigm is used to classify
handwritten characters. To use the NN algorithm, a distance measure between
two character images is needed. Usually, the solution is to represent each image
as a feature vector obtained from the entire image, using the appearance-based
approach as above (each pixel corresponds to one feature) or some type of fea-
ture extraction. Finally, using vector space dissimilarity measures, the distance
between two character images is computed.

In the handwritten characters classification problem, there usually appear
clear differences between handwritten versions of the same character. This is
an important handicap to the NN classification algorithm if the feature vector
is obtained from the entire image. But it is possible to find local parts of the
characters that seem to be unchanged, that is, the distance between them is low
in two handwritten version of the same character. This leads to the idea of using
a local feature approach, where each character is represented by several feature
vectors obtained from parts of the image.

In a classical classifier [1], each object for training and test is represented by
a feature vector, and a discrimination rule is applied to classify a test vector.
In the handwritten characters scenario, the estimation of posterior class prob-
abilities from the whole object seems to be a difficult task, but taking local
representations we obtain simpler features to learn the posterior probabilities.
Moreover, we obtain a model that is invariant with respect to horizontal and
vertical translations.

3.1 Extraction of local features

Many local representations have been proposed, mainly in the image database
retrieval literature [5, 6]. In the present work, each image is represented by several
(possibly overlapping) square windows of size w x w, which correspond to a set
of “local appearances” (cf. Fig. 3).

To obtain the local feature vectors from an image, a selection of windows
with highly relevant and discriminative content is needed. Although a number
of methods exist to detect such windows [7], most of them are not appropriate
for handwritten images or they are computationally too expensive.

In this work, the grey value of the pixels is used as selection criterion. Dark
pixels (with low grey value) are selected in order to determine points on the trace
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Fig. 3. Example of four local features extracted from an image of a handwritten digit.




of the handwritten character. The surrounding window of each selected pixel is
used as one of the local features for the representation of the whole character.

The possibly high dimensionality of w? vector components is reduced using
a principal component analysis on the set of all local features extracted from the
training set.

3.2 Classification using local features

Given a training set, for each image of the training set a set of feature vectors
is obtained. The size of these sets may be different, depending on the number of
local features chosen. Each local feature vector has the same class label associated
as the image it was obtained from. All these feature vectors are then joined to
form a new training set.

Given a test image x, we obtain M, feature vectors, denoted by {z1,... ,zn, }-
Then, to solve the problem of classification of a test object represented by local
features, the sum rule is used to obtain the posterior probability of the object
from the posterior probabilities of its local representations [8]:

M,
r(z) = argmax P(k|z) ~ argmax Z P(k|xm)
k k

m=1

And to model the posterior probability of each local feature, a k-NN is used:

Vg (Tom)

P(klzm) ~

)

where vy (2,,) denotes the number of votes from class k found for the feature x,,
among the x nearest neighbors of the new training set. We adopt the sum rule as
an approximation for the object posterior probabilities and the k-NN estimate
is used to approximate each local feature posterior probability, yielding:

M, M.,
Uk(wm)
r(xr) = argmax ———= = argmax Vi (X, 1
(#) = angmax 3 27 g 3 (o) 1)

In words, the classification procedure is summarized as follows: for each local
feature of the test image, the k-nearest neighbor algorithm gives a fraction of
votes to each class, which is an approximation of the posterior probability that
each local feature belongs to each class. As each of the vectors obtained from
the test image can be classified into a different class, a joint decision scheme
is required to finally decide on a single class for the entire test image. The
probabilities obtained from each local feature are combined using the sum rule
to obtain the overall posterior probability for the entire image for each class. The
test image is assigned to the class with highest posterior probability. According
to Eq. (1), this decision corresponds to the most voted class counting all votes
from all local features of the test image [8].
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Fig. 4. Examples of digits misclassified by the local feature approach, but correctly
classified by the tangent distance classifier (first row, note the variation in line thickness
and affine changes) and vice versa (second row, note the missing parts and clutter).

3.3 Computational considerations

Representing objects by several local features involves a computational problem
if the number of local features to represent one object is very large. The k-NN
algorithm needs to compare every local feature of a test object with every local
feature of every training object. This high computational cost is considerably
reduced by using a fast approximate k-nearest neighbor search technique [9].

4 Experimental results on the USPS database

All the results presented here were obtained using the well known US Postal
Service handwritten digits recognition corpus (USPS). It contains normalized
grey scale images of size 16x16, divided into a training set of 7291 images and
a test set of 2007 images. A human error rate estimated to be 2.5% shows that
it is a hard recognition task. Some (difficult) examples of the test are shown in
Fig. 4. Several other methods have been tried on this database and some results
are included in Table 1.

Observing that the two classifiers described here led to different errors on the
USPS data, this situation seemed to be especially suited for the use of classifier
combination in order to improve the results [10]. For example, tangent distance
is able to cope with different line thicknesses very well, while the local feature
approach can tolerate missing parts (like segmentation errors) or clutter. Fig. 4
shows some of the errors, which were different between the two classifiers.

Therefore, the experimental setup was comparably simple. The best result
obtained so far (2.2% error rate) was already based on classifier combination
on the basis of class posterior probabilities. Hence, it was only necessary to
include the results of the local feature approach (which yielded an error rate of
3.0%) in the combiner. We used the decision based on the local features with two
votes, one statistical classifier with one-sided tangent distance and two statistical
classifiers with two-sided tangent distance. Using majority vote as combination
rule, ties were arbitrarily broken by choosing the class with the smallest class
number k. With this approach, we were able to improve the result from 2.2% to
2.0%. Table 1 shows the error rates in comparison to those of other methods,
which are mainly single classifier results.

Note that the improvement from 2.2% to 2.0% is not statistically significant,
as there are only 2007 test samples in the test set (the 95% confidence interval



Table 1. Summary of results for the USPS corpus (error rates, [%]).
*: training set extended with 2,400 machine-printed digits

lmethod ER[%)] ‘
lhuman performance [SIMARD et al. 1993] [2] 2.5‘
relevance vector machine [TIPPING et al. 2000] [11] 5.1
neural net (LeNetl) LECUN et al. 1990] [12] 4.2
invariant support vectors [SCHOLKOPF et al. 1998] [13] 3.0
neural net + boosting [DRUCKER et al. 1993] [12] *2.6
tangent distance [SIMARD et al. 1993] [2] *2.5
nearest neighbor classifier [14] 5.6
mixture densities [15] baseline 7.2

+ LDA + virtual data 3.4
(1) kernel densities [14] tangent distance, two-sided 3.0

+ virtual data 2.4

+ classifier combination 2.2
(2) k-nearest neighbor, local representations 3.0
classifier combination using methods (1) and (2) 2.0

for the error rate on this experiment is [1.4%,2.8%]). Furthermore, it must be
admitted that these improvements seem to result from “training on the testing
data”. Against this impression we may state several arguments: On the one
hand, only few experiments using classifier combination were performed here.
Secondly, there exists no development test set for the USPS dataset. Therefore,
all the results presented on this dataset (cf. e.g. Table 1) must be considered
as training on the testing data to some degree and therefore a too optimistic
estimation of the real error rate. This adds some fairness to the comparison.
Despite these drawbacks, the presented results are interesting and important in
our opinion, because the combination of two classifiers, which are able to deal
with different transformations of the input (cf. Fig. 4), was able to improve on
a result which was already very optimized.

5 Conclusion

In this work, the combination of two different approaches to handwritten char-
acter classification was presented. These two methods are complementary in the
transformations of the images that are tolerated and thus in the sets of misclas-
sified images. Therefore, the application of a combined classifier based on these
two techniques is a suitable approach. In the experiments carried out, it was ob-
served that the combination improves the results of the previously best classifier
on the USPS corpus from 2.2% to 2.0%. Although this is not a statistically sig-
nificant improvement, qualitatively, the advantages of the combination become
clear when regarding Fig. 4. This shows the benefits of the applied combination,
which will possibly be helpful for image classification tasks in the future.
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