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landmarks when the image is entered into
the database. Hence, ASSERT has ex-
tremely high data entry costs, which prohib-
it its application for clinical routine. Long et
al. access a large collection of 17,000 spine
radiographs by means of shape analysis,
where biomedical categories such as “ante-
rior osteophytes present/not present” are
distinguished automatically [8]. The data
entry costs are low, but queries are limited
to the pre-defined categories. Chu et al.
present a knowledge-based image retrieval
system with spatial and temporal constructs
[9]. Brain lesions are extracted automati-
cally within three-dimensional data sets
from computed tomography and magnetic
resonance imaging. Their representation
model consists of an additional knowledge-
based layer within the semantic model.This
layer provides a mechanism for accessing
and processing spatial, evolutionary, and
temporal queries. Nonetheless, those con-
cepts for medical image retrieval are task-
specific, i.e. limited to a particular modality,
organ, or diagnostic study and, hence,
usually not directly transferable to other
medical applications.

However, the distinctive characteristics
of descriptive text versus self-contained 
image information in general are well
understood and, in particular, their impact
on medical image databases intended to
support indexing and retrieval is commonly
appreciated. Strategies for implementing
medical image retrieval systems have been
derived, which employ object-oriented
iconic queries, semantics by association
with prototypes, and a generic scheme [10].
Hence, medical CBIR usually addresses
three major problems [11]: (i) which kind of
semantics must be modeled by disjunctive
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1. Introduction
Content-based image retrieval (CBIR)
aims at describing the complex object in-
formation of digital images by non-textual
features, which are applicable for efficient
query processing. Color, texture, and shape
are used within the first CBIR approaches
such as the query by image content (QBIC)
system [1]. Besides the raw data layer rep-
resenting the initial images, QBIC models a
feature layer on which the retrieval oper-
ates. For the content-based retrieval engine
(CORE), objects and spatial relationships
are described by “concepts” within the so-
called interpretation layer [2]. In Blob-
world, this layer is referred to as scheme
layer. It is built from ellipsoids (“blobs”)
representing local image regions of uni-
form color or texture on an abstract level of
interpretation [3]. However, two or three
semantic layers are insufficient to model
medical knowledge for image retrieval and
consequently, results are rather poor when
common CBIR algorithms are applied to
medical images [4, 5].

In recent reports, some approaches for
content-based retrieval  specially designed
to support medical tasks have been pub-
lished. Korn et al. describe a system for fast
and effective retrieval of tumor shapes in
mammogram x-rays [6]. This approach has
certain restrictions on both the images
(mammography only) and the features (tu-
mor shapes only), which are supported by
the system. Likewise, the automatic search
and selection engine with retrieval tools
(ASSERT) operates only on high-resolu-
tion computed tomography of the lung [7].
A physician delineates the region bearing a
pathology and marks a set of anatomical
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semantic layers, (ii) which kind of features
should be used at each stage of abstraction
and which distance or similarity measure
should be applied, and (iii) how can the
data management and computing be organ-
ized efficiently? 

In this paper, we present an approach
for content-based image retrieval in medi-
cal applications (IRMA) with particular 
focus on its semantic layers of information
modeling, its hierarchical concept for fea-
ture representation and distance computa-
tion, and its distributed system architecture
for efficient implementation. In addition,
we present sample applications to show the
general applicability of the concept.

2. The IRMA Approach

2.1 Information Modeling and
Steps of Processing
Compared to standard CBIR systems, at
least three additional semantic levels of 
abstraction are needed to cope with the
complex medical knowledge that is to be
handled by a general system for content-
based image retrieval in medical applica-
tions. A low level of medical knowledge is
determined by the imaging modality in-
cluding technical parameters, the orienta-
tion of the patient position with respect to
the imaging system, the examined body 
region, and the functional system under 
investigation. Based on prototype images, a
mid-level of knowledge is described by re-
gions of interest (ROIs) within the images,
and a high level is obtained from informa-
tion regarding the spatial or temporal rela-
tionships of relevant objects. Consequently,
IRMA splits the retrieval process into 
seven consecutive steps (Fig. 1). Each step 
represents a higher level of image abstrac-
tion, reflecting an increasing level of image
content understanding [12].

The categorization step aims at deter-
mining  the imaging modality and its orien-
tation as well as the examined body region
and functional system for each image entry.
For that, a detailed hierarchical coding
scheme was developed [13], which exceeds

the complexity of existing tags of the digital
imaging and communications in medicine
(DICOM) standard, such as (0018/0015) 
“body part examined” or (0018/5100) 
“patient position”, but could be consistent-
ly integrated to supplement the standard.
Automatic categorization is based on a ref-
erence database of 10,000 images selected
arbitrarily from clinical routine and manu-
ally classified by experienced radiologists.
This database integrates medical knowl-
edge at a low level of abstraction.The auto-
matic categorization of query-by-example
images is performed by combining DICOM
header information and global image 
features, i.e. features describing the entire
image. However, categorization in IRMA is
not exclusive. Subsequent steps of process-
ing are applied for the most likely catego-
ries.

Registration in geometry (rotation,
translation, scaling) and contrast generates
a set of transformation parameters that is
stored for the corresponding image in each
of its likely categories. In consent with 
Tagare et al. [10], registration is based on
prototypes which are manually defined for
each category, and further incorporate
medical expert knowledge into the IRMA
system. Note that the transformation is not
performed explicitly at this step of process-
ing. Instead, the generated parameters are
utilized at higher layers of abstraction.

The feature extraction step derives local
image descriptions, i.e. a feature value (or a

set of values) is obtained for each pixel.
These can be category-free (e.g. resulting
from edge detection or regional texture
analysis) or category-specific, such as the
application of an active shape model that
explicitly uses a-priori knowledge derived
from the respective category.

Decoupling feature selection from fea-
ture extraction allows the integration of
both the image category and query context
into the abstraction process. For instance,
the same radiograph might be subject to
fracture or cancer examination, resulting in
a contour-based or texture-based combina-
tion of features, the so-called feature sets,
such as the contour set or texture set,
respectively. In order to avoid exhaustive
computation during query processing,
these feature sets are pre-computed for
each image in each likely category.

Indexing provides an abstraction of the
previously generated and selected image
features, resulting in a compact image de-
scription. According to the selected feature
set, this is done via clustering of similar im-
age parts into regions represented by their
second area moment description as ellipses
(“blobs”). In contrast to the Blobworld ap-
proach [14], this is done at multiple resolu-
tions yielding a multi-scale blob-represen-
tation of the image (“blob tree”). Note that
hierarchical indexing enables the process-
ing of ROIs, which are marked by the user
when issuing a query. In contrast to existing
approaches to medical image retrieval, the

Fig. 1 IRMA processing steps (gray, middle) resulting in six semantic layers (dotted lines).
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ROI is not determined a-priori. In other
words, the incorporation of medical mid-
level knowledge becomes possible.

According to Tagare et al. [10], an essen-
tial requirement for satisfying medical
queries is a high level of image understand-
ing offering object-oriented retrieval. The
identification step provides linking of medi-
cal a-priori knowledge to certain blobs 
generated during the indexing step. It relies
on the prototypes defined for each catego-
ry, which are labeled locally by medical 
experts, and the corresponding parameters
for geometry and contrast registration.
Thus, identification is the fundamental ba-
sis to introduce high-level image under-
standing by analyzing regional or temporal
relationships between the blobs.

In IRMA, the retrieval itself is processed
either on the abstract blob level or refer-
ring to identified objects. Note that only the
retrieval step requires online computations
while all other steps can be performed au-
tomatically in batch mode at entry time of
an image into the database. This, of course,
requires offline computation of all paths
generated by the categorization and the
feature selection step.

2.2 Feature Representation and
Distance Computation

Image categorization is performed by
means of global features, i.e., a single value
or a vector combining a few values is as-
signed to the entire image. A large number
of global features have been proposed in
the literature for content-based image re-
trieval. Besides major components from
color and gray scale histograms or the mo-
ments of dominant regions, we focus on
global measures obtained from (i) frequen-
cy, (ii) texture and (iii) structure analysis.
Fourier, discrete cosine or wavelet trans-
forms extract suitable characteristics of 
images [15, 16]. Texture descriptors are 
obtained from spatial grey-level difference
statistics, circular Moran autocorrelation
function, entropy and coarseness [17] as
well as from the images’ fractal dimensions
[17, 18]. The structure of an image is an
edge-based measure that has been recently

introduced by Zhou and Huang [19]. Based
on the Canny edges of an image, statistics
on edge length, bifurcation and branching
as well as loops are used to characterize the
entire image.

The feature values obtained for each 
image are combined to a feature vector,
which is then used for k-nearest-neighbor
classification based on e.g. the Euclidean,
or Simard’s tangent distance [20].The latter
is able to cope with local geometry and con-
trast differences.

It is important to realize that we do not
aim at clustering our feature space in order
to find suitable categories but that we apply
as many global features as required to 
distinguish the categories, which are given
a-priori. Furthermore, this categorization is
not crisp. The most likely categories are
tracked through the following steps of pro-
cessing. Hence, the actual category should
be within the most likely ones but does not
need to be the likeliest.

Local features are assigned to each im-
age pixel. Regardless of the determined
category, local features are extracted uni-
formly for all images. In other words, all
methods for local feature extraction are ap-
plied to each image. Besides the gray value
itself, anisotropy, polarity, and contrast are
determined according to the Blobworld 
approach [14]. Furthermore, spatial convo-
lution techniques open a great variety of
methods. With respect to both image cate-
gory and query content, suitable feature
sets are selected to enable query-adaptive
processing without additional computation
at the time of query processing.

In contrast to most other CBIR systems,
local IRMA features are not used directly
to compute a distance measure between
two images. Instead, a blob representation
is computed first to significantly reduce the
amount of data. Following the Blobworld
approach [3], dominant image regions are
approximated by their best fitting ellipses
to which the mean feature vector of the en-
tire region is assigned.While the Blobworld
approach applies an expectation maximiza-
tion clustering technique within the feature
space, the partitioning in IRMA is comput-
ed in the image domain by means of an
edge-preserving region growing algorithm
[21]. This ensures connected segments and

a complete image partitioning. In fact, the
complete partitioning permits a hierarchi-
cal image decomposition to model a multi-
scale approach. On the lowest level, each
pixel builds its own blob while on the high-
est level, a single blob represents the entire
image. In between, a tree structure of blobs
is obtained.

Figure 2 exemplifies the multi-scale ab-
straction that is modeled by the IRMA
system. The image (Fig. 2, left) is partitioned
into representations with a decreasing 
number of regions (Fig. 2, upper row). While
the color-coding of regions is initialized 
randomly, the color of the largest region is
maintained during a merge. Dominant re-
gions are represented by their best fitting 
ellipsoids (Fig. 2, lower row). These ellip-
soids form the nodes of the IRMA blob tree
representation of images (Fig. 2, right). The
strong edges in light blue build the hierarchi-
cal tree structure of the graph. Adjacencies
within a level of the multi-scale decomposi-
tion are coded red. To reduce the total num-
ber of nodes to be displayed, stable nodes
not repeated in the next level. Instead, the
thin blue edges mark adjacencies of nodes
crossing the levels of decomposition (e.g.,
Fig. 2, nodes 5 and 9).

Consequently, the distance or similar-
ity of images or ROIs transforms into a 
(sub-)graph-matching problem. Several ap-
proaches have been suggested as solutions.
For instance, similarity flooding is applied to
determine corresponding nodes via identical
connections to their neighboring nodes 
using a fix-point iteration [22]. Alternative
approaches focus on a direct partial node-
to-node mapping, which is solved in polyno-
mial time [23]. More general, one can com-
bine structural matching and the method of
solving optimization tasks using Hopfield-
style nets to establish a mapping between
two graphs that maps similar parts onto each
other preserving as much as possible of their
overall structural correspondence [24].

2.3 Data Management and 
Query Processing

Regardless of their semantic layer, all 
feature extraction and evaluation steps of
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IRMA are regarded as method transform-
ing features. The method joins a program
and its parameterization into one. As 
described in the previous section, IRMA
provides a general feature model. It only
depends on the method whether it results
in value, pixel, or tree data. In particular,
value data is numerical values or alphanu-
merical strings coding global features, pixel
data contains images and local features, and
tree data holds the hierarchical structured
blobs as well as their mean feature vector.
Only three types of methods are sufficient
to model arbitrary steps of retrieval algo-
rithms: (i) a T:1-method transforms a fea-
ture set into a single feature (e.g. generating
a matrix for statistical feature reduction by
principal component analysis), (ii) a 1:1-
method transforms one feature into an-
other (e.g. computing a spatial convolution
of an image), and (iii) a 1:T-method trans-
forms one feature into a set of features (e.g.
generating multiple representations of one
image via small transformations). Queries
are modeled as a network of interconnect-
ed user-implemented methods with a flex-
ible feature input/output interface. Similar
to dataflow process networks, we use di-
rected acyclic graphs composed of methods
and control elements [25]. Parameters and
information on reference images and pro-
totypes are stored in an experiment de-
scription. Since experiments are composed
of modules, a structured generation history
for each feature allows the automatic iden-
tification and re-use of already computed
features.

In other words, the manifold structure of
information abstraction (Sec. 4.1) is re-
duced to a small number of mechanisms
that can be handled within a distributed
client-server architecture (Fig. 3). The cen-

tral components (database, scheduler, web
server) run on a server.The client processes
(daemons, programs, applications) are used
for distributed computing in a cluster [26].

The central relational database is used to
store administrative information about
physical entities, i.e. value, pixel and tree
data as well as sources of programs, and
logical entities, i.e. methods, networks, and
experiment definitions characterizing the
algorithms for image processing and re-
trieval, their parameters, and the feature
sets in use. The physical entities are stored
as files outside the database and can be
hosted by any computer within the distrib-
uted system. Using the information about
the cluster infrastructure, transparent ac-
cess to and automatic replication of all
physical entities are implemented.

The scheduler is a central service that
manages the execution of all queries or fea-
ture extraction tasks. It uses transmission
control protocol (TCP) sockets to commu-
nicate with all daemons and the programs
running in the cluster. The scheduler has
two functional parts. For each invoked
query, the process control sub-part creates
a data structure to log the progress during
the execution of the corresponding experi-
ment. For each node of the network ready
to be executed, a job is generated, which in-
cludes the method identifier (ID), the IDs
of the input features and their locations,
and allocated IDs for the output features.
The communication subpart assigns jobs 
to programs running in the cluster. If the
program needed by a job is not running, the
scheduler selects an appropriate host and

Fig. 3 The IRMA system architecture is composed of three core elements, which are marked in red color. Processes on the
clients and the interfaces are displayed in yellow and blue, respectively.

Fig. 2 Initial image (left), hierarchical partitioning and corresponding blobs (middle), and resulting graph representation (right)
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issues the IRMA daemon on this machine
to start the program. Additionally, the
scheduler can order idle programs to termi-
nate in case this program will not be re-
quired within a look-ahead interval. Upon
the completion of a job, the scheduler re-
ceives a notification from the program and
updates the feature information in the
database.

Each computer within the system runs
an IRMA daemon. This background pro-
cess automatically installs new programs on
its host and starts them on demand. The
daemon service is also used to inform the
scheduler about the current load of its host.
Furthermore, it can detect possible abnor-
mal terminations of programs and report
them to the scheduler for fault handling.
The daemon also performs the automated
program transfer: By evaluating the ver-
sioning information from the database, the
daemon can determine if a program needs
to be installed or updated. Due to the 
heterogeneous cluster infrastructure, pro-
grams are transferred as source code. Once
the transfer is complete, a make-file is 
generated and executed, resulting in the
program’s executable.

The physical executable of a program
entity consists of a user-implemented sub-
routine linked to a generic main routine
which handles all system communication
via the daemon: receiving a job from the
IRMA scheduler, loading the parameter-
ization and the input data, starting the sub-
routine, and storing the resulting output
features. Each client hosts a default loca-
tion where large data objects are stored. If
required input data is locally unavailable,
a replication is retrieved via the daemon 
using the same mechanisms as described
before for the automated program transfer.
Once a program is started on a client, it can
compute a sequence of individual data 
objects with optimized memory access. For
instance, communication with the daemon
interfacing the IRMA system to the pro-

gram is implemented using shared memory.
However, the user providing an IRMA
method has to implement only the prob-
lem-related algorithm of the feature trans-
formation.

Modular interfaces to support queries
within the IRMA system are generated by
the web server using the hypertext prepro-
cessor PHP. Besides the query by example
strategy, two basic mechanisms are provid-
ed for medical applications: relevance facts
explain to the user why a certain picture
has been presented as a query result, and
relevance feedback allows the user to cor-
rect, adapt, or modify his query by adapting
parameters of the algorithm (query refine-
ment). Logging of interactions enables the
repetition of complex query refinement
processes and allows references to previous
query steps. Boolean functions extend the
logical linkage of results. Furthermore, the
strict separation of information and its vis-
ualization makes it simple to add new visu-
alization modules or to change the layout
of existing modules.

A standard web browser is used as the
graphical user interface (GUI) for all 
IRMA applications. This has numerous ad-
vantages. IRMA applications  run platform-
independent on any computer connected to
the Internet and hence, they are not re-
stricted to the IRMA cluster. In addition,
physicians are used to handle web inter-
faces and, therefore, they do not need spe-
cial instruction to use IRMA applications.

3. Results
Although manual labeling of the IRMA
reference database is still in progress, the
system was already used for processing 
basic queries, i.e. queries regarding the cat-
egory of images. Based on a subset of 1,617
images from six body regions (abdomen,
limbs, chest, breast, skull, and spine) ac-

quired with various modalities in several
orientations, a statistical classifier based on
the tangent distance performed with as low
as 8% error rate [27]. Table 1 shows results
of other methods on this data, indicating
the results to be outstanding considering
the difficulty of the task.

In another study, 1,867 chest radio-
graphs were separated automatically into
frontal (posterioanterior) and lateral orien-
tation by a correlation measure computed
from substantially size-reduced icons of 
8 � 8 pixels. Here, the error rate was below
1% [29].

Currently, the IRMA reference data-
base holds 3,879 images that have been 
labeled according to the IRMA code 
(Table 2). Since the frequency of imaged
body regions reflects the clinical situation,
chest radiographs occur most often. In 
addition, the sub-region classes are distrib-
uted irregularly. Classes with less than ten
examples were not considered for leaving-
one-out experiments. A downscaled image
representation of 16 � 16 pixels results in
256 features that were used for a 5-nearest-
neighbor correlation-based classifier. Re-
gardless of modality, orientation and bio-
logical system, automatic classification of
the anatomic region is possible with error
rates of 11.6% and 15.8% using leaving-
one-out for eight body regions and for 26
relevant sub-regions, respectively. Taking
into account the large number of categories
and the high variability within the catego-
ries due to the various imaging modalities,
the results obtained are excellent. Also
note that the IRMA concept pursues all
likely categories for later processing steps:
When the three or five most likely sub-
regions are considered for each sample, the
error rate for 26 sub-regions drops to 8.4%
and 5.6%, respectively. For this experiment,
the 15 and 25 nearest neighbors were ana-
lyzed. Combining the correlation-based
classifier with a statistical classifier can 
further decrease the error rates. If each
classifier contributes the 8 and 13 nearest
neighbors, error rates yield 6.9% and 4.8%,
respectively. Note that all leaving-one-out
experiments were performed automatically
and controlled by the IRMA scheduler.

Preliminary results were also obtained
for the web-based interfaces. The IRMA

Table 1
Error rates of different
methods on the subset of
1,617 images from the 
IRMA reference database
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method implementation time; and (v) job
distribution transparency when issuing a
query.

According to Tagare et al. [10], the
changeability of a medical image database
is the single most important aspect of build-

Table 2
Current distribution of im-
age categories within the
IRMA reference database

code editor is used for manual labeling of
reference images (Fig. 4a).The IRMA code
can be edited either directly by typing in
the code or by selecting the entries from 
selection boxes. Based on prior selections,
the sub-codes offered are adopted proper-
ly. All changes are recorded in a history
protocol stored in the central database for
easy error recovery (Fig. 4b).

4. Discussion
In addition to the requirements originating
from content-based retrieval in general
[11], the design of a medical image retrieval
system requires attention to several other
aspects and domain-specific properties [10].
In particular, the IRMA system supports
modular design of arbitrary retrieval algo-
rithms. Modularity easily enables the verifi-
cation of isolated processing steps and 
allows the re-use of programs for various
experiments and applications. All kinds of
features (global, local, blob trees) are uni-
formly accessible, which results from the
general and flexible feature model provid-
ed by IRMA. This includes a straightfor-
ward definition of a set of images (more
general: a set of features). The system sup-
ports the automatic transfer of new and 
updated processing components into the
pool of retrieval algorithms available to the
physicians. In addition, new algorithms can
quickly access the image database shorten-
ing the cycles between development and
testing.

All technical details of the IRMA
system are as transparent as possible for all
participants. There is no need for the pro-
grammer to take care of platform-related
communications regarding the query con-
text, feature access, or feature storage. In
particular, the storage location is transpar-
ent. Furthermore, the programmer is dis-
burdened from data-flow synchronization,
i.e. concurrency transparency of processing
steps. For the physician, the execution of a
query does not require additional technical
knowledge about the underlying imple-
mentation of the retrieval process, i.e. all
steps of the process run fully automatically
without further user interaction. In sum-

mary, IRMA provides (i) location and ac-
cess transparency for data and program
sources; (ii) replication transparency for
programs in development; (iii) concurrency
transparency for job processing and feature
extraction; (iv) system transparency at 
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ing content-based image retrieval systems
in medical applications. Based on the trans-
parent mechanisms for distributed comput-
ing, data replication, and program installa-
tion, IRMA relies on a generic scheme for
image content abstraction that is based on a
central database. It enables the image and
feature database to considerably evolve
over the lifetime of the system. Further-
more, image features used in IRMA are
computed automatically and are not influ-
enced by knowledge bias arising from a
gestalt-driven diagnostic interpretive pro-
cess. Therefore, IRMA database activity is
decoupled from interpretation activity,
which meets the second most strongest re-
quest of Tagare et al. [10].

5. Conclusion
In contrast to specific applications, a gener-
al CBIR approach for medical images is
presented and implemented combining a
central database with a distributed system
architecture suitable for large image data-
bases such as within a picture archiving and
communication system. The IRMA system
supports rapid prototyping and quick inte-
gration of novel image analysis methods. So
far, the IRMA system is used to answer
primitive queries on the image category
level. However, these experiments already
have proven the validity and applicability
of the IRMA concept. Resulting from
system transparency, IRMA is suitable for
sophisticated image processing to be per-
formed by a medical user. In other words,
CBIR principles are made available for a

variety of medical applications. Hence,
IRMA narrows the gap between the se-
mantic imprint of an image and any alpha-
numerical description that is always incom-
plete.
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