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Abstract

This paper describes application possibilities for statistical methods and particulary hid-
den Markov models in the domain of sequence learning after treating the required basics.
Especially the task of natural language processing is treated by elaborating on speech recog-
nition and speech translation. Furthermore a network intrusion detection system to detect
complex and coordinated Internet attacks is presented briefly to illustrate the universality
in the concept of sequence learning.

1 Fundamentals

In this section a brief overview of the needed fundamentals to understand the further
discussed concepts is given and the domain of sequence learning is outlined.

Further literature references are given at adequate spots to permit the consultation of
more detailed background information.

1.1 Notation Overview

Some syntax rules for better comprehension:

• P denotes probabilities whereas p is used for probability densities.

• Calligraphic letters like V are employed for sets.

• Capital letters like N are utilized for constant values.

1.2 Statistical Basics

Here we define stochastic processes and Markov chains – a time-restricted stochastic pro-
cess. Both concepts are essential to understand the principle of hidden Markov models.

Some very elementary statistical principles – that means Bayes’ rule, random variables,
probability distributions and similar things - are assumed to be familiar.

1.2.1 Stochastic Processes

A stochastic process constitutes a series of random variables q1, q2, . . . which adopt values
Qt out of a discrete or continous domain according to specific probability distributions.
The distribution function of the Qt may depend on the current state qt and its predeces-
sors q1, q2, . . . , qt−1.

The stochastic process is called stationary if its behaviour is independent of the abso-
lute value of time t.

It is called causal if additionally the distribution of Qt is only a function of the previ-
ous states q1, q2, . . . , qt−1, i.e. it does not rely on states in the future.

P (qt = Qt|q1 = Q1, q2 = Q2, . . . , qt−1 = Qt−1)
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or simplified
P (Qt|Q1, Q2, . . . , Qt−1)

is the probability distribution for a discrete, stationary and causal stochastic process. [7]

1.2.2 Markov Chains

Stationary and causal stochastic processes that only rely on a finite number n of past
states are named nth-order Markov chains and satisfy the so-called Markov property :

P (Qt|Q1, Q2, . . . , Qt−1) = P (Qt|Qt−n, . . . , Qt−1)

In the case of a stochastic process that is further constrained to only the last state

P (Qt|Q1, Q2, . . . , Qt−1) = P (Qt|Qt−1)

we speak of first-order Markov chains.

It should be noted that higher order Markov chains are semantically equivalent to first-
order Markov chains because state extensions can be coded into a single state. Although
the higher order chains may be more convenient to use in some cases [7].

Furthermore they can be expressed via finite state machines.

1.3 Parameter Estimation

A method to supply proper parameters for a statistical model with the aid of training
data are needed.

Subsequently we present two common methods achieving this: the maximum-likelihood-
estimation that maximizes the probability of a model on specific training data and the
maximum-a-posteriori-estimation which additionally considers the initial estimates.

1.3.1 Maximum-Likelihood-Estimation

The maximum-likelihood-estimation (MLE) tries to determine estimates θ̂ for statistical
parameters based on a sample ω = {x1, x2, . . . , xT }, such that the probability is maximized
for the observed data.

L(θ|ω) := p(x1, x2, . . . , xT |θ) =
T∏

t=1

p(xt|θ) should be maximized using the likelihood functional L(θ|ω).

The aim of MLE is to maximize the value of the likelihood functional for a given model
and set of samples ω dependent on θ:

θ̂ML = arg max
θ

L(θ|ω)

MLE delivers an optimal solution for an infinite number of samples, i.e. lim
T→∞

θ̂ML = θ∗

[7].
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1.3.2 Maximum-A-Posteriori-Estimation

In the maximum-a-posteriori-estimation (MAPE) the optimization criterion is the a-
posteriori-probability of the model parameters based on a sample ω = {x1, x2, . . . , xT }:

θ̂MAP = arg max
θ

p(θ|ω)
Bayes
= arg max

θ

p(ω|θ)p(θ)
p(ω)

Hence p(ω) is independent of the sought model parameters, it can be neglected during
maximization:

θ̂MAP ≡ arg max
θ

p(ω|θ)p(θ)

The MAPE is superior (but more complex as well) to the MLE if only a small num-
ber of samples is given. This is caused by the inclusion of the initial estimates p(θ) in the
MAPE calculation which are ignored by the MLE. [7]

1.3.3 Expectation-Maximization-Algorithm

An expectation-maximization-algorithm (EM-algorithm) is a meta-algorithm to derive spe-
cific algorithms, like the Baum-Welch-algorithm for hidden Markov models, that find esti-
mates of parameters in probabilistic models which depend on unobserved variables (latent
variables). They work in a two-step scheme: first the expectation step is accomplished
where the expected values of the latent variables are computed, then the maximization
step occurs where the estimates are evaluated according to the model parameters and the
data, assuming the previously calculated expected values for the latent variables.
A very thorough explanation can be found in [7, 9].

Formal: Let y be the observed variables, z be the latent variables, p be the joint model
of complete data with parameters θ: p(y, z|θ). Now an EM-algorithm iteratively improves
the initial estimate θ0 through the construction of new estimates θ1, . . . , θN [19]:

θn+1 = arg max
θ

∑
z

p(z|y, θn) log p(y, z|θ) = arg max
θ

Q(θ)

It is proven that an EM-algorithm converges to a local maximum of the observed data’s
likelihood function.

1.4 Basic Terms

Here we sketch some concepts or linguistic terms used throughout the following chapters.

• Q-filter bank: a filter bank in which the energy sensitivity follows a logarithmic
relationship in each channel.

• constant Q-filter bank: a Q-filter bank in which the ratio of the center frequencies of
adjacent channels is constant and the filter bandwidth is proportional to the center
frequencies.
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• phoneme: it is the smallest distinguishable unit of speech without semantic infor-
mation, i.e. changing a phoneme inside a word changes the meaning but a phoneme
in itself has no meaning [23].

Phonemes are no sounds in themselves, but they have to be made audible through
allophones (→ realization of phonemes) and depending on the language the same
phonemes are mapped onto different allophones. Moreover important is the fact that
one word may have several representations in phoneme sequences, so for instance
’the’ corresponds to ’DH/AH’ as well as to ’DH/IY’ depending on its context.

• coarticulation: this describes the assimilation of speech sounds because of the place
of articulation, i.e. adjacent speech sounds distort the original spectral content.
As an example the ’n’ in ’tenth’ is pronounced dental because of the ’th’ while it
normally has an alveolar place of articulation [18, 13].
It is particularly prevalent in spontaneous speech where the speaker does not care
for enunciation.

2 Hidden Markov Models

A hidden Markov model (HMM) is a two-stage stochastic process. The first layer consists
of a discrete Markov process with a finite number of states probabilistically describing the
state transitions. In the second layer an emission Ot is generated for every point in time
t [20].

Only that series of emissions is observable but the sequence of states is unknown – hence
the Ot are called observation sequence and the Markov models are called ’hidden’.

HMMs are particularly suitable for the modelling of time-oriented processes and have
therefore been extensively used in natural speech processing systems with great success
but they are applicable in other areas of sequence learning as well.

2.1 Definition

A first-order HMM λ is completely described by [7]:

• a finite set of states {qi|1 ≤ i ≤ N},

• a matrix A of state-transition probabilities

A = {aij |aij = P (qt = j|qt−1 = i)},

• a vector π of state-start probablities

π = {πi|πi = P (q1 = i)},

• the state-specific emission distributions

{bj(ok)|bj(ok) = P (Ot = ok|qt = j)}
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or
{bj(x)|bj(x) = p(x|qt = j)}.

Discrete emissions, i.e. Ot ∈ {o1, o2, . . . , oM}, lead to discrete HMMs where the bj(ok)
are discrete probability distributions that can be integrated into a matrix B of emission
probabilities with

B = {bjk|bjk = P (Ot = ok|qt = j)}.
Vector-like emissions x ∈ Rn lead to continous HMMs where the bj(x) are continous
density functions with

bj(x) = p(x|qt = j).

2.2 Types of Models

An HMM can be classified according to its allowed state transitions:

• linear: only state transitions to the current or next state are allowed
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// ©
��
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• Bakis: like a linear model but the jump over single states is possible

// ©
��

//
88©

��
//

88©
��

//// ©
��

//

• left-right: all state transitions pointing to the current or following states are allowed
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• ergodic: all possible state transitions are allowed
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Jumps to past states are not needed in many cases because of the time-linear input data
of the application domain. Generally it can be said that the more state transitions are
allowed the more parameters have to be trained and therefore a compromise between flex-
ibility and usability has to be made.

A more elaborate illustration can be found in [15, 7].



8 2 HIDDEN MARKOV MODELS

2.3 Problems and Solutions

Here we want to give a short summary of the three basic problems arising with the use of
HMMs. Since this is not the main theme of this paper only a short outline is given – for
details the reader is referred to [15, 3, 7].

1. Evaluation Problem: Given the observation sequence O = O1O2 · · ·OT , and a model
λ = (A,B, π), how do we efficiently compute P (O|λ), the probability of the obser-
vation sequence, given the model?

The naive approach which consists of considering all possible paths is unfeasible
since for N states and T time-slots it needs 2TNT computations. Since this tech-
nique ignores the fact that there are only N possible states at any moment, we can
improve the complexity by merging every possible state sequence into a correspond-
ing state. This method is called Forward-Backward-procedure and its complexity is
N2T .

2. Decoding Problem: Given the observation sequence O = O1O2 · · ·OT , and the model
λ, how do we choose a corresponding state sequence Q = q1q2 · · · qT , which is optimal
in some meaningful way, i.e. best ”explains” the observations?

Here a dynamic programming solution called Viterbi (MLSE) exists which is very
well applicable. In a few words Viterbi finds the most probable hidden state sequence
for a given observed state sequence by traversing through a Trellis with traceback
information and after completion it traces back to the start determining the overall
best path. This process can be sped up with beam search where a heuristic estima-
tion function is used, however not only the one but the m most probable pathes are
passed through [9].

3. Optimization Problem: How do we adjust the model parameters λ = (A,B, π) to
maximize P (O|λ)?

This is the most complex of the three basic problems. Because of complexity no
analytic method is feasible, hence a locally maximizing method like the Baum-Welch-
algorithm has to be used. It is an instance of the EM-algorithm and calculates the
maximum likelihood estimates and posterior mode estimates for the given parame-
ters of an HMM iteratively.

2.4 Implementation Issues

Here we want to give a short overview of different aspects to be considered when imple-
menting HMMs [15]:

1. Scaling: The reestimation procedure of HMMs includes a term that heads expo-
nentially to zero, practically exceeding the precision range of essentially every real
machine. Therefore a scaling coefficient is used.

2. Multiple Observation Sequences: To train HMMs in a left-right model we have to
use multiple observation sequences for reliable estimates as the transient nature of
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states within the model only allows a small number of observations for each state.
The key is to remove the scaling factor from each term before summing.

3. Initial Estimation of HMM Parameters: The problem is how to choose the initial
estimates of the HMM parameters so that the local maximum is close to the global
maximum of the likelihood function. To this problem there is no straightforward
answer and only empirical experience has been established.

4. Effects of Insufficient Training Data: The finite length of observation sequences used
for training is a problem in practice. Possible solutions are the enlargement of the
training set, model size reduction and interpolation of different parameter estimates
although not all methods are always applicable.

5. Choice of Model: This fully depends on what the HMM should model and has to be
decided from case to case.

3 Sequence Learning

Sequence learning either describes the process of estimating following sequence elements
given the current one and its predecessors or the analysis of a sequence. No limitations
are made on the types of data that are contained within the sequence.

These tasks can be accomplished via statistical methods, the usage of HMMs and the
incorporation of techniques from other scientific areas.

It should be remarked that the common problem description permits utilization in many
other application areas not described here. As the definition is rather general, all data
that are representable in a sequence are appropriate. Especially systems with time-discrete
data are particulary suitable because vectors consisting of all data values of the same point
in time constitute a sequence of data.

In the following subsections some possible applications of sequence learning techniques
are presented and a few chosen examples are discussed in more detail in the next sections.

3.1 Anomaly Detection

Anomaly detection describes the recognition process of suspicious or somehow deviant
information out of a usually rather big block or stream of information.

Normally the problem is to provide rules classifying data as either abnormal or normal,
which proves to be rather tedious if possible at all. Using HMMs we are able to tackle
it another way – first we gather a large amount of data to train the system and then it
learns to classify on its own without specified rules.

As the definition of anomaly detection is very general, there are many different appli-
cation areas. Here we picked out a network intrusion detection system (NIDS) [12, 4] for
closer inspection.
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Other possible uses not closer inspected in this paper include for instance visual recogni-
tion or visual surveillance. Some background information for the interested reader about
the former task can be found in [2, 6, 16] whereas the latter one is treated in [10].

3.2 Bioinformatics

Bioinformatics or computational biology combines techniques from applied mathematics,
informatics, statistics and computer science to solve biological problems.

Research areas in this field include sequence alignment, gene finding, genome assembly,
proteine structure alignment, proteine structure prediction, prediction of gene expression,
protein-protein interactions and the modeling of evolution [17].

The reader is referred to [5, 8] for some recent applications of HMMs in computational
biology as they are not closer reviewed in this paper.

3.3 Natural Language Processing

Natural language processing (NLP) is a subfield of artificial intelligence and linguistics.
It studies the problems inherent in the processing and manipulation of natural language
and is devoted to making computers ”understand” statements written or spoken in human
languages [21].

We will discuss the various sections of NLP in-depth, that are speech recognition (spoken
to written) and speech translation (between two natural languages) as well as present the
current state of those techniques.

The task of speech understanding (natural to semantic) needs no exclusive treatment
as it is a special form of speech translation and similar methods can be applied. It can be
seen as the translation of natural speech into the formal language that is used for semantic
representation or database requests [11].

There exist two common approaches to this problem area: while the one by Noam Chom-
sky formalizes a language and works rule-based (also called the linguistic approach), the
statistical one tries to maximize the probability of correct detection through established
procedures like MAPE. As the statistical method seems to deliver much better results [11]
– without the problematic usage, i.e. hard setup of rules - we will restrict ourselves to the
inspection of such a system in this paper.

It is worth a comment that experiments on audio-visual speech recognition have been
conducted in [1] with asynchronous HMMs leading to very interesting results: without the
presence of noise there are almost no differences in the word-error-rate of audio-only (2.9%)
vs. audio-visual (4.8%) recognition in their experiments. But as soon as the noise reaches
a significant level the audio-visual system clearly performs better with a word-error-rate
of 41.1% compared to the 79.1% of the audio-only approach.
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4 Detection of Multi-Staged Internet Attacks

A NIDS monitors network traffic and tries to detect ongoing malicious activity [22], i.e.
Denial-of-Service attacks, port scans, traffic monitoring, transported viruses/malware or
similar actions. Normally systems work according to a set of rules to classify different
types of intrusion. The inherent problem here is that a typical sophisticated attack will
stretch across several stages, i.e. probing, consolidation, exploitation and compromisation.

Due to the temporal seperation of these stages, potentially incomplete data, interchange-
able actions, random/noisy action sequences and the low number of examples1 classical
systems are at best able to identify such a single stage of attack because of the tedious
manual definition of appropriate classification rules (if possible at all2). Machine learning
techniques have to be applied to find correlations between the different stages and enable
the detection of fully coordinated multi-staged attacks [12].

In the following subsections we want to give a short overview of a system using HMMs to
recognize such complex attacks as presented in [12] by first elaborating on its design and
then presenting some operational results obtained. The authors state that such a system
is particulary interesting because it ”operates a level higher”, i.e. it uses packet filter
alarms (from programs like Snort) as input instead of raw packet data, than normal NIDS
and shows promise to deliver some interesting results as soon as it reaches suitability for
common application.

As this seemed more absorbing than the inspection of classical NIDS using machine learn-
ing techniques they have been skipped in this paper and the reader is for instance referred
to [4] where more information on a typical NIDS working with HMMs can be found.

4.1 System Architecture

See Figure 1 for the block diagram illustrating the following description.
The flowing network traffic is analysed by the network sensors and they declare alarms on

possible intrusion attempts, which are stored in the alarm database for further processing.
In the data prefiltering step redundant data is removed from the input but although the
abstraction through usage of network sensors instead of raw packet data already extremely
simplifies this task3 two new problems are introduced.

On the one hand network sensors are designed to prefer false positves to false negatives
leading to probably wrong alerts and on the other hand repetitive actions (like repeated
port probes) that generate a series of alarms may obfuscate the real alarm sequence. The

1The Rare Data Problem: As the most skilled types of attacks only happen rarely and are detected
even less, machine learning techniques have difficulties to adapt to them due to missing training data.

2In fact it seems absolutely impossible to define rules in a way that they include all (or even many) types
of specific multi-staged attacks from a specific level of complexity on, i.e. the series of correlated actions
is long enough. There are just too many possibilities to permutate action sequences, to insert/remove
redundant actions or that distinct actions get interwoven to define generally working rules.

3The normal network traffic – for instance connection setups, disconnections, legal browser requests -
is completely ignored in this model.
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Figure 1: Multi-Staged Attack Detection System – Block Diagram [12]

latter problem is dealt with by just replacing such sequences by their period whereas the
first one still remains open.

Now the data consists of connection records including the source/destination IP address
and the ordered sequence of alerts during a specified duration of 24 hours. In the HMM
classification module interested examples are highlighted for further human evaluation and
false classifications are manually corrected by a network analyst to update the system by
sending them back to the alert database.

4.2 Usage of HMMs

Observables of an HMM correspond to the different alarms of a given example in this sys-
tem. Those examples include all alarms between two specified hosts in a 24-hour interval;
so an assignment between a set of observables and a specific attack can be made. The
task of the HMM is to determine the most probable type of attack to a given sequence of
alarms. Additionally the calculation of the likelihood of a specific attack is made possible.
A seperate HMM gets generated for each classification category, i.e. type of attack, since
HMMs are designed to simulate a single category. Furthermore the designed HMMs have
in principle an ergodic structure, so all possible state transistions are generally allowed.

The probabilistic transitions in the HMM match with the variations of an attack se-
quence and tool choices. Every possible state sequence traversing the HMM from start to
end describes a more or less probable way to accomplish the type of attack specified by
the specific HMM. The state transition probabilities are generated through calculation of
the relative frequencies of alarm sequences in the training data. Such a model can then
be used to acquire the most probable attacker’s intentions just by evaluating the alarm
sequences, which is very valuable.

4.3 Empirical Results

In [12] a performance comparison of this system, implemented with a slightly modified
version of HMMLib (a HMM library in Java), C4.5 decision trees and neural networks
(both out of the WEKA machine learning library) has been conducted. The definition of
performance is done via evaluating the quotient of examples classified as the correct type
of attack and the number of overall examples.
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The HMM approach always performed at least as good as C4.54. Neural networks only
performed slightly better than guessing, although they required more training.

According to [12] it can be said that HMMs provide good detection chances (92.5%).
They state that categories whose training data consists of few examples perform worse
and practically determined around ten examples as a reasonable lower limit (on required
training data for a type of attack) to provide adequate classifications.

5 Speech Recognition

The task of a speech recognition system is to map a piece of sampled speech onto a spoken
word sequence. We will elaborate the process in detail by breaking the system up into
different functional blocks and discussing them piece-wise [13, 11]. Furtermore the usage
of HMMs, methods to evaluate a system’s performance and advanced speech recognition-
systems’ (ASR-systems5) evolution in the last time are treated.

ASR-systems or large-vocabulary speech recognition systems are systems capable of un-
derstanding a naturally spoken language in contrast to systems which only understand
a very limited subset of a language like airline reservation systems. When talking about
speech recognition systems in this paper in fact ASR-systems are meant.

5.1 Probabilistic Model

The system tries to maximize the probability of the recognized word sequence ŵN
1 given

an acoustic sequence yT
1 using Bayes’ rule where wN

1 is a sequence of words out of the
lexicon [13]:

ŵN
1 = arg max

wN
1

p(wN
1 |yT

1 ) ≡ arg max
wN

1

p(yT
1 |wN

1 )p(wN
1 )

So really meaningless sentences, i.e. they would practically never occur in natural lan-
guage, are excluded from recognition and common sentences get preferred over similar
sounding but less probable sentences, which ultimately improves the hit/miss-ratio.

In contrast a MLSE would ignore these initial estimates and only the audible features
would correspond to the classification process. That would render the process to gather
the initial estimates unnecassary and thus save quite some effort but the performance
would be severly constrained – so this technique seems rather uncommon if applied at all.

5.2 System Architecture

See Figure 2 for the block diagram illustrating the following paragraphs.

410 examples: 45% vs. 30% – 50 examples: 79% vs. 67% – 400 examples: both ≈ 92%
5ASR is more commonly used to abbreviate ’automatic speech recognition’ but in this paper we mean

’advanced speech recognition’ to emphasize the ability to understand a very large dictionary spoken by
any speaker in natural intonation as defined in [13].
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Figure 2: Speech Recognition System – Block Diagram [13]

5.2.1 Feature Extraction

In this component a multi-dimensional vector is extracted from the sampled speech at
equidistant points in time, i.e. 39 parameters every 10 ms – these vectors are called fea-
ture vectors or acoustic observations. They are mapped onto phonemes later on, which is
why the temporal variation is included in the coding.

Multiple feature vectors can be packed together for compression purposes. Further data
reduction is achieved through a model of the human auditory and speech system. Redun-
dancy introduced by the human speech articulators and the human auditory system, as it
emulates the behaviour of a constant Q-filter bank, is eliminated.

5.2.2 Lexicon

Here each word to be recognized gets mapped to one or more sequences of phonemes.
A commercial lexicon typically covers several tens of thousands of words but a trade-off
between size and coverage has to be made. So for domain-specific jargon either a task-
aligned system has to be used or a high miss rate is inevitable.
It is assumed that all spoken words are included in the lexicon to simplify the modelling
of the system. Approaches to recognize that a spoken word is not contained in the lexicon
– called out of vocabulary recognition – exist, but we won’t treat them here further.

5.2.3 Language Model

The computation of p(wN
1 ), i.e. the absolute probability of occurence of a word sequence,

is done by the language model for each possible sequence of words. As this simple approach
grows exponentially with growing sequence length it is not applicable for real applications.
The heuristic solution is the abstraction to the trigram model where the probability of a
current word is only dependent on the last two words:

p(wN
1 ) = p(w1)p(w2|w1)

i=N∏
i=3

p(wi|wi−1, wi−2)
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with

p(wi|wi−1, wi−2) =
N(wi, wi−1, wi−2)

N(wi−1, wi−2)

where N refers to the relative frequency of the associated event.

To achieve a good set of estimates p(wi|wi−1, wi−2) hundreds of millions of words are
needed for training. Even then many trigrams of a test subset never occur in the training
subset6. Therefore it is required to smooth the probability estimates through interpolation
of the trigrams’, bigrams’ and unigrams’ relative frequencies:

p(wi|wi−1, wi−2) = λ3
N(wi, wi−1, wi−2)

N(wi−1, wi−2)
+ λ2

N(wi, wi−1)
N(wi−1)

+ λ1N(wi)

The trigram model and the issue of optimal selection of the λi is extensively treated in [9].

5.2.4 Acoustic Model

p(yT
1 |wN

1 ), i.e. the probability of a sequence of acoustic observations under the assumption
that they have been generated by a specific word sequence, is evaluated by the acoustic
model. Since variations in the duration of speech and the spectral content due to coartic-
ulation are inevitable and these are of stochastic nature, HMMs are an optimal choice for
its modelling.

Each HMM represents a phoneme and a pass through it matches its articulation whereby
durations are modelled by loops in the states of the HMM. At each time frame a proba-
bilistic transition is made and a feature vector is emitted.

This permits the computation of the likelihood that a particular phoneme has generated
a given series of feature vectors. As the actual state sequence of the HMM is hidden it
has to be summed over all possible ones which is efficiently accomplishable with dynamic
programming due to the lack of global dependencies [9].

However, the system has to be trained first and for this purpose we need large amounts
of training data, i.e. spoken word sequences with their corresponding feature vectors and
recognized word sequences. Then the HMM parameters can be trained to maximize the
likelihood of the acoustic observations with MLE.

Formal: Let yT
1 be a sequence of T acoustic observations and wN

1 the correct word sequence
with the MLE θ̂ML:

θ̂ML = arg max
θ

log[pθ(yT
1 |wN

1 )]

Now an HMM is constructed for the correct word sequence wN
1 by generating an HMM

for each word by concatenation of the phoneme-representing HMMs first and then the
connection of those to produce the final one which recognizes the word sequence afterwards.
But as the state sequence of an HMM is unknown, the assumption of passing it in T time

6An evaluation by IBM in the 70s led to 23% unknown trigrams according to [9].
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frames is problematic. Thus we introduce st to describe the hidden state at the point in
time t allowing MLE:

arg max
θ̂

T∑
t=1

∑
st

pθ(st|yT
1 ) log[pθ̂(yt|st)]

This is solved iteratively with an EM-algorithm where the expectation-step can be accom-
plished via the Forward-Backward-procedure.

Another problem that has to be regarded is coarticulation as it distorts the spectral con-
tent of speech depending on its context. Therefore a theoretical approach would require
the generation of as many probability densities per phoneme as possible combinations of
surrounding phonemes exist. But this is practically not viable because just 50 phonemes
would require the modelling of 125,000 probability densities. So the phonemes are clus-
tered in a small number of equivalence classes [13].

5.2.5 Hypothesis Search

The hypothesis search spans the lexicon and the results of the language/acoustic model
to determine the word sequence ŵN

1 with the highest likelihood depending on the speech
input and the model’s parameters:

ŵN
1 = arg max

wN
1

p(yT
1 |wN

1 )p(wN
1 )

This is equivalent to search a tree whose branches are labelled with the words of a dictio-
nary V = {v1, v2, . . . , v|V|}. Such a tree branches |V| times at each node – once per word
in the dictionary.

Since dictionaries contain a large number of elements a naive approach is unfeasible. A
technique called fast match [14], where a heuristic evaluation function generates a list of
the best N � |V| candidates that are the only ones to be considered further, is applied to
reduce the computational requirements to a bearable level.

We can use the Viterbi-algorithm with beam search or a tree search algorithm like A∗

which searches through a tree in depth-first-manner but traversing paths with the best
value according to a heuristic estimation function first. It has to be regarded that both
techniques are suboptimal in some sense: Viterbi is not guaranteed to return the most
probable word sequence and tree search methods may always prune off the best path as
they have to use heuristics to be efficient enough [9].

5.3 Performance Measurement

To measure system performance an appropriate quanity has to be introduced. The word
error rate which represents the ratio of word recognition errors to the overall number of
words to be recognized is quite suitable for this purpose. Depending on the type of system
the error ratio can vary by a few orders of magnitude [13].
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Some factors affecting the word error ratio have to be considered:

• Amount of Training Data: a bigger amount of training data. . .

• Background Noise: a cleaner background. . .

• Language Model Perplexity: a lower language model branching factor. . .

• Sampling Rate: a higher sampling rate. . .

• Speech Spontaneity: a less spontaneous speech. . .

• Vocabulary Size: a smaller vocabulary. . .

. . . usually improves the system performance by lowering the word error ratio.

For instance an ASR-system, as presented in our paper, has been tested for spontaneous
and speaker-independant telephone speech recognition tasks in [13] leading to a word error
rate of 32.7%. The system can be used for different tasks without major changes as the
underlying language’s dictionary is huge and therefore the results seem quite significant
for ASR-systems in general.

Furthermore there have been illustrated the recent advantages in the past few years on
the field of ASR by first constructing the system without them – leading to a first word
error rate of 40.5% – and then applying each one step by step to finally reach the above
mentioned 32.7% for a relative improvement of 19%.

5.4 State-of-the-Art

Although ASR-systems have undergone major progress in the last years, humans still per-
form better at various tasks by at least an order of magnitude [13]: i.e. connected digits
(0.72% vs. 0.009%), letters (5.0% vs. 1.6%), transactional speech (3.6% vs. 0.1%), dicta-
tion (7.2% vs. 0.9%), conversational telephone speech (43.0% vs. 5.0%).

It is clearly visible that human performance is yet unmatched, but we can also educe
that ASR-systems are quite usable under certain circumstances. So what are the other
limiting factors at the moment?

Primarily the natural intonation of the human voice is a major problem for ASR-systems
as it increases the word error rate significantly. Another problem is the distinction of
different voices: while training to specific speakers is helpful, it may not be applicable
everywhere.

Besides these points, ASR-systems are still very vulnerable to background noise. While
human recognition degrades by about 20% for a transition from a quiet background to
10dB, machines still deteriorate at least by a factor of 2.

Despite those unresolved problems, according to [13], human performance could be matched



18 6 SPEECH TRANSLATION
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Figure 3: Speech Translation System – Block Diagram [11]

within ten years on condition that the research progress remains steady. This would allow
the utilization in new domains where today’s systems still prove too error-prone.

6 Speech Translation

The task of speech translation describes the process of mapping sentences out of a source
language into a different target language. We will approach this similar as in the previous
chapter but only give short outlines as both tasks are closely related.

This is the most general case of NLP as every other NLP task can be reduced to the
translation between two languages.

6.1 Probabilistic Model

The goal of a translation system is to generate an approriate sentence tJ1 = t1 . . . tj . . . tJ
in the target language to a corresponding and given sentence in the source language
sI
1 = s1 . . . si . . . sI . Here si describes a word in the source language at position i and

tj means a word in the target language at position j accordingly. Now the system tries to
maximize the probability of the translated word sequence t̂J1 given the original sentence
sI
1 using Bayes’ rule:

t̂J1 = arg max
tJ1

p(tJ1 |sI
1) ≡ arg max

tJ1

p(tJ1 )p(sI
1|tJ1 )

6.2 System Architecture

See Figure 3 for the block diagram illustrating the following elaborations.

Potentially needed preprocessing of input and postprocessing of output data is taken
care of by the transformation component.



6.3 Empirical Results 19

In the language model p(tJ1 ) gets evaluated for all possible sentences in the target lan-
guage while considering its semantical and syntactical constraints.

Aligments aI
1 = a1 . . . ai . . . aI are introduced as hidden variables to consider the different

word positions between the sentences in source or target language. That means the word
si in source language gets mapped onto the word tj in target language at position j = ai.

The translation model p(sI
1|tJ1 ) establishes a connection between source and target sentence

by spanning the lexicon-model p(sI
1|aI

1, t
J
1 ) and the alignment-model p(aI

1|tJ1 ):

p(sI
1|tJ1 ) =

∑
aI
1

p(sI
1, a

I
1|tJ1 ) =

∑
aI
1

p(aI
1|tJ1 )p(sI

1|aI
1, t

J
1 )

To simplify further both models get decomposed in conditional distributions with special
assumptions, i.e. p(ai|ai−1, I) for the alignment and p(sI

1|tai) for the lexicon. [11]

6.3 Empirical Results

Two problem descriptions with corresponding systems and empirical tests are cited in [11]:

In the first one (VERBMOBIL) the task was to translate spoken natural language be-
tween German and English where the vocabulary consisted of approximately 8000 words.
The best results have been achieved by a statistical system with an error rate of 29%
whereas the rule-based approach yielded the worst result with an error rate of 62%. This
does not mean that statistical systems work generally better but it is worth noting that
in most empirical experiments they achieve the better results.

The other assignment was to translate between between spoken and/or written English
and/or Chinese. Hereby the mapping between a small vocabulary in English and a large
vocabulary in Chinese introduces another problem to be regarded. As the statistical ap-
proach again led to the best results it has been refuted that it is only applicable for similar
languages.

Conclusion

Although the application areas of sequence learning are numerous, all systems function
basically similar and rely on the same mathematical principles. HMMs are particulary
suitable for the modelling of such problems as they allow to find the most probable se-
ries of state transitions given observed values and permit to evaluate the probability of
occurence of a specific series of state transitions which covers a high ratio of sequence
learning tasks. They are so adaptive because of the introduction of the hidden layer, i.e.
they abstract the observations from the real series of actions we are interested in.

The inspected NIDS to detect multi-staged complex Internet attacks seems a very promis-
ing idea as it tries to handle the task at a higher level of abstraction than conventional
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systems. Only such a global view allows to detect and classify the most sophisticated at-
tacks that naturally are the most interesting ones as well. To allow more significant results
a standardization of classification categories, i.e. types of attack, and a more widespread
use to gather large amounts of examples would be helpful. Especially the problem of rare
data, i.e. very complex attacks have no or too little corresponding training data, and the
problem of partial data, i.e. find a way to identify multi-staged attacks as early as possible
by determining likely preludes to complex intrusions, are still unresolved.

Progress has been made in the field of NLP in the last decades and such systems are
applicable in specialized environment settings, i.e. agreement of appointments via conver-
sational telephone speech, airline reservation systems or call centers to just name a few.
Nevertheless they are not yet capable for universal usage as the very large dictionary and
the ability to understand all types of speakers needed lead to an injustifiable performance.
Further areas of interest include, amongst other things, the handling of natural intonation,
the elimination of the need to train to a specific speaker while maintaining good perfor-
mance on a large dictionary, and the elimination of unwanted background noise where
humans still perform a lot better.
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