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Universidad Politécnica de Valencia
Valencia, Spain – rparedes@dsic.upv.es

Abstract

Using local features with nearest neighbor search and
direct voting obtains excellent results for various image
classification tasks. In this work we decompose the method
into its basic steps which are investigated in detail. Differ-
ent feature extraction techniques, distance measures, and
probability models are proposed and evaluated. We show
that improvements are possible for each of the investigated
enhancements. This shows that the important aspect of the
framework is the decomposition of the training images into
sets of local features for each class.

1. Introduction

For the task of appearance based image recognition, lo-
cal and global approaches have been proposed. An inherent
problem with global approaches is usually their suscepti-
bility to local and global variations, e.g. slight changes of
the viewpoint or illumination. Some of the methods that
were proposed to circumvent this problem include the use
of a distance measure that is invariant towards small global
transformations [3, 10] or the use of representations that are
invariant with respect to several transformations [1].

The use of local representations on the other hand pro-
vides the possibility to cope with local and global variabil-
ity, e.g. translations and, to a certain extent, changes of
the viewpoint. However, if the geometrical relationship be-
tween the features is to be taken into account, it has to be
modeled explicitly. In [4] a map of the positions of the lo-
cal features from two images that are compared is calculated
using non-linear deformation models and in [2] the relative
position, the scale, and the appearance of local features are
modeled with a mixture density.

Many of the proposed local feature approaches compare
the local features on a per image basis and model the global
relation between the feature positions. In the approach pre-
sented here, the relation between local features is ignored
�
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and the comparison is not done on a per image basis. In-
stead, every local feature of the test image is compared to
all features of all training images; therefore only the local
image context is relevant to the matching and the final de-
cision. This approach was introduced in [8] and obtained
very good results on different tasks, e.g. for face verifica-
tion [7]. The method is illustrated in Figure 1. To gain a
deeper understanding of the approach, the feature extrac-
tion, the distance measure, and the probability model are
investigated in more detail in this work.

2. Local Features for Image Classification

The local feature based method with direct voting was
initially proposed in [8] and is used as a baseline method
for our investigations. Here we give a short overview of this
method followed by the proposed enhancements.

Local features are square sub images with a size of �����
pixels from an image. They are extracted at positions with
a high local variance of the grey values. This is done in
practice by defining a threshold �
	�� and using only local
features with a local variance higher than � . These are the
extracts of the image that are expected to be well suited for
discrimination. This approach has been shown to improve
recognition results compared to taking all local features [6].

In the training phase, the features are extracted and a
principal components analysis (PCA) is applied. This gives
a representation of the features where the components are
sorted by importance. The dimensionality of the represen-
tation is reduced by discarding all components with a higher
index than  . These reduced features are then labeled with
their class name and stored in a kd-tree to allow for a fast
nearest neighbor search.

In testing, the �
��� dimensional windows are also ex-
tracted at positions of high local variance, and their dimen-
sionality is reduced using the PCA transform that has been
computed in training. Then, for each local feature of the test
image, the feature from the training images that is most sim-
ilar with respect to the Euclidean distance is searched within
the kd-tree. The nearest neighbors of the test features are
grouped according to their class labels and the class which
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Figure 1. Schematic view of classification.

contains most of nearest neighbors is chosen as the classifi-
cation result. This decision rule is usually referred to as di-
rect voting as every local feature gives an equally weighted
vote to the class it belongs to. A probabilistic interpretation
of this approach is presented in Section 2.3.

2.1. Multi Scale Feature Extraction

In the baseline method, the extracted features all have
the same size. However, by restricting the comparison to
sub images of only one size, we implicitly assume that the
objects are represented at the same scale in all images that
are to be classified. Motivated by the results presented in
[2], we relax this constraint by extracting features at differ-
ent scales. To do so, a minimal feature size ����� � , a step size� , and a maximal feature size �����	� are chosen. Then the
extraction is performed at all pixel positions for windows
with the width of � ��� ��
 ������ � ���	� with � 	�� and the
extracts with low local variance are discarded. � ����� is set
to the size of the smaller image dimension. In the next step,
the features are scaled to a fixed size

�
� . Then the features

are PCA transformed and stored in the kd-tree. This extrac-
tion is done for the training and the test images, resulting in
a potentially larger number of local sub images. However,
this number of sub images can be adjusted by increasing the
variance threshold � .

2.2. Tangent Distance

The similarity between two local features is measured
using the Euclidean distance in the baseline method. How-
ever this measure is inherently sensitive to all kinds of trans-
formations, as e.g. rotation, scaling, brightness changes, etc.
The tangent distance (TD) [3, 10] gives invariance with re-
spect to small global transformations that are known a pri-
ori. The transformations modeled are usually the 6 pro-
jective transformations eventually complemented by some
problem specific transformations. To our knowledge the TD
has only been used to compare entire images, so far. Here,
it is used to measure the similarity of local features.

Let � be an image extract and �� a ��� ��� matrix containing
its � used tangent vectors. The TD is then given by

d ����� �"!$#&%('*),+-/.1032
�/4 �5� 
 �� �76 #98:�"! 4 �

Note that in this work the tangents are applied to the local
feature vectors of the test image.

We use the TD in combination with the local features for
the nearest neighbor search. However, the local features are
PCA-transformed image extracts. The TD cannot be easily
computed directly on the PCA-transformed vectors, as it is
originally designed for images. However, the linearity of
the PCA transformation allows us to transform the tangent
vectors using the same PCA transformation matrix ; 	
�9<>=/?A@ as is used for the images and then calculate the TD
in the reduced space:

; � ��� 
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2.3. Probability Model

From the distance function, we compute the local feature
posterior probability as
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where `a� denotes the empirical variance over the training
features and b is an empirical parameter. We denote by �
the test feature vector and

�� W its nearest neighbor from the
class G according to the distance measure d. This approach
is derived from the maximum approximation to the kernel
density or Parzen window estimator. The baseline method
uses the Euclidean distance, while we propose to use the
TD instead. Furthermore, in the baseline method, a binary
probability model is used. F �DG3I �E# is 1 if the nearest neigh-
bor of � is from class G and 0 otherwise, which amounts to
direct voting. This is a limiting case of the model (1) above
for b�ced . The probability that the image f with the local
features � P �7g�g7g����Jh�i is from class G is then computed us-
ing the sum rule, which is known to be well suited for noisy
data [5]:
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3. Databases

The extensions to the baseline method are evaluated on
three different classification databases:

(a) Image Retrieval in Medical Applications (IRMA) is a
corpus used in a cooperation of three departments of
the RWTH Aachen University containing 1617 images
of radiographies. The images are subdivided into 6
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Figure 2. Example images from (a) IRMA,
(b) Erlangen, and (c) Bloodcells.

classes depending on the body region they represent.
The image size is variable. We scale all images such
that the shortest side is 32 pixels and the aspect ratio
is kept. Also a 2-bin histogram normalization is per-
formed to increase the contrast of the images. Some
example images can be seen in Figure 2(a). The best
error rate on this database is 5.3% [4].

(b) Erlangen is an object recognition corpus from the
Chair for Pattern Recognition of the University
Erlangen-Nürnberg. It contains 6 tasks. Here the only
task that is considered is object recognition with partial
occlusion and changing illumination, as it is the most
difficult one. The corpus contains 5 objects that are ro-
tated in steps of 5 � . The images have a size of

����� � �����
pixels and are scaled down to

k���� � k���� . The best error
rate on this corpus of 4.8% is reported in [9].

(c) Bloodcells is a corpus for red blood cell classification.
It contains 5062 images of 3 types of red blood cells.
The images are

��	 � ��	 pixels and are scaled down to

�� � 
�� pixels. Histogram normalization is performed to
improve the image contrast. It is quite a difficult clas-
sification task as can be seen from the best reported
error rate of 15.3% and the human error of approxi-
mately 20% [1].

4. Experimental Results

Kernel densities are compared to direct voting on sev-
eral corpora. Their use improves the recognition result in
all cases. On IRMA, direct voting leads to 10.3% error and

the kernel densities approach leads to 9.7%. On Erlangen
direct voting results in 1.2% against 0.6% error for kernel
densities and the result on Bloodcells is 17.7% without and
17.2% with kernel densities. In the following, we show that
the use of kernel densities improves the results when com-
bined with multi-scale feature extraction and with the TD.
This suggests that the use of the distance to estimate the
probability is generally better than voting directly.

The use of multi-scale features is compared to the ex-
traction of features at only one scale. With exception of
this, all parameters are maintained the same. The tests are
performed on the IRMA corpus, once using direct voting
and once with kernel densities. The results improve from
10.3% to 10.0% error with direct voting and from 9.7% to
9.4% for the kernel densities approach. This shows that the
multi-scale extraction leads to improvements independent
of the probability model.

The TD is compared to the Euclidean distance on IRMA.
The transformations that are approximated by tangents are
the affine trasnformations of the image plane and additive
image brightness. With direct voting the result is improved
from 10.3% to 7.7% by using the TD and if the kernel den-
sities are used as a probability model the result is improved
from 9.7% to 7.4% error. We observe a significant decrease
of recognition error in both conditions.

We get another interesting result if we use the horizon-
tal and vertical Sobel filter on the local features. With the
Euclidean distance, the error rate improves from 10.3% to
8.9%. However, if the Sobel filter is used in combination
with the TD, a result of 7.8% is obtained instead of the 7.7%
that are obtained without Sobel filter.

On Bloodcells the TD is tested with the same tangents
as for IRMA and additionally with a tangent for line thick-
ness. This tangent was included, because the width of the
borders of the cells varies strongly even within one class.
The result is 17.2% error for the Euclidean distance and
13.5% error for the TD. Direct voting is used as a probabil-
ity model. This result represents the best known outcome
on this database.

The feature dimensionality reduction is typically done
using PCA. We also have experimented with the discrete
cosine transform (DCT) for dimensionality-reduction. This
is done by transforming a feature into a wave image using
the DCT and discarding the higher frequency components
of the representation. Doing so, we obtain an error rate of
11.0% on IRMA compared to 10.3% with the PCA. How-
ever the advantage of the DCT is that it does not have to be
computed on the training data and thus saves one process-
ing step, while it leads to only slight degradation in perfor-
mance.

The results on the three databases, along with the best
other results published, are presented in the Tables 1 to 3.
The approaches presented here lead to the best results on



Table 1. Results for the IRMA task.

Method Error (%)
Euclidean distance, 1-NN [4] 15.8
Direct voting 10.3
Kernel density 9.7
Multi scale, Kernel density 9.4
Sobel, Direct voting 8.9
TD, Kernel density 7.4
Best other [4] 5.3

Table 2. Results for the Erlangen task.

Method Error (%)
Direct voting 1.2
Kernel density 0.6
Best other [9] 4.8

Table 3. Results for the Bloodcell task.

Method Error (%)
Euclidean distance, 1-NN 24.4
Direct voting 17.7
Kernel density 17.2
TD, Direct voting 13.5
Best other [1] 15.3

Bloodcells and on Erlangen. The results on Erlangen clearly
show that the local feature approach is well suited to cope
with occlusion.

5. Conclusion

In this paper we investigated enhancements for local fea-
ture based image classification. We showed that recognition
is improved when using multi-scale features for the IRMA
database. Using kernel densities instead of direct voting
also improves recognition on all three used databases. Fi-
nally, applying the TD instead of the Euclidean distance
leads to improvements as well. If the DCT is used in-
stead of the PCA for feature dimensionality reduction the
result deteriorates slightly, but the PCA estimation step on
the training data can be saved. The experiments show that
the local feature based approach is well suited to cope with
partial occlusion. Observing that in each of the compo-
nents feature extraction, distance measure, and probability
model improvements of the baseline method are possible,
we may assume that the main point of the method (that al-
ready makes the baseline method very powerful) is the fol-
lowing: in the search for similar image parts, all local fea-
tures of one class are hypothesized at the same time and not

on a per image basis, neglecting the position of the extracted
local features.

We believe that adding global constraints to the local fea-
tures approach could lead to improvements. A possible ap-
proach for this could be an image distortion model similar to
that proposed in reference [4]. Also, combining the appear-
ance based local features with other kinds of features, such
as texture characteristics, could improve recognition. Fi-
nally, estimating the importance of features could also lead
to improvements in recognition.
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Setúbal, Portugal, July 2001.

[9] M. Reinhold, D. Paulus, and H. Niemann. Appearance-
based statistical object recognition by heterogeneous back-
ground and occlusions. In Pattern Recognition, 23rd DAGM
Symposium, LNCS 2191, pp. 50–58, Munich, Germany,
Sept. 2001.

[10] P. Simard, Y. Le Cun, and J. Denker. Efficient pattern recog-
nition using a new transformation distance. In Advances in
Neural Information Processing Systems, volume 5, pp. 50–
58, San Mateo, CA, USA, 1993.


