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Abstract. In this paper, we present a mixture density based approach to invariant
image object recognition. To allow for a reliable estimation of the mixture para-
meters, the dimensionality of the feature space is optionally reduced by applying a
robust variant of linear discriminant analysis. Invariance to affine transformations
is achieved by incorporating invariant distance measures such as tangent distance.
We propose an approach to estimating covariance matrices with respect to image
variabilities as well as a new approach to combined classification, called the virtual
test sample method. Application of the proposed classifier to the well known US
Postal Service handwritten digits recognition task (USPS) yields an excellent error
rate of 2.2%. We also propose a simple, but effective approach to compensate for
local image transformations, which significantly increases the performance of tangent
distance on a database of 1,617 medical radiographs taken from clinical daily routine.

Keywords: statistical pattern recognition, density estimation, invariant image ob-
ject recognition, combined classification

1. Introduction

In this paper, a mixture density based approach to invariant image
object recognition is presented. We propose a Gaussian mixture density
(GMD) based Bayesian classifier and extend this non-invariant stan-
dard approach using SIMARD’s tangent distance [26], as invariance plays
an important role in object recognition [29]. Tangent distance is also
used for the reliable estimation of covariance matrices, which is espe-
cially important if only few training samples are available. Furthermore,
a new scheme for combined classification called the virtual test sample
method (VTS) is proposed. The effectiveness of our approach is shown
by applying it to the widely used US Postal Service recognition task
(USPS). In the experiments, we make use of appearance based pattern
recognition, i.e. each pixel of an image is interpreted as a feature,
optionally performing feature reduction using a linear discriminant
analysis (LDA) [10, pp. 114-123]. Using VTS and LDA, the mixture
density based standard approach yields a test error rate of 3.4%. This
error rate can be further improved to 2.2% by using tangent distance
in the recognition step of a kernel density (KD) based classifier and
by estimating the proposed tangent covariance matriz (without feature
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reduction). To show the general applicability of the presented approach,
we also apply it to a database of 1,617 medical radiograph images that
were taken from the RWTH Aachen - University of Technology IRMA
project (Image Retrieval in Medical Applications) [3, 18]. On this data,
the performance of tangent distance can be significantly improved using
a simple image distortion model to compute the proposed distorted tan-
gent distance. In contrast to tangent distance, which deals with global
image transformations, distorted tangent distance also compensates for
local image variations.

1.1. RELATED WORK

While appearance based image object recognition is common in the
pattern recognition community, the use of invariant statistical classifiers
such as the one proposed here is not. MOGHADDAM & PENTLAND
used Gaussian mixtures for view-based image recognition, accounting
for invariances by assuming appropriate training samples and suitable
image normalization [20]. SCHIELE employed histogram based image
features within a Bayesian classifier, but did not use mixture densities
to model the required probability densities [23]. HINTON et al. applied
tangent distance to define a modified version of a principal components
analysis within a linear autoencoder based classifier [14], the approach
being similar to computing a maximum approximation within a mixture
density based classifier. Furthermore, HASTIE et al. computed suitable
prototype vectors from a given training set with respect to tangent
distance, which can be used to speed up nearest neighbour classification
(by using just a few prototype vectors instead of the possibly large
training set) [13]. Not surprisingly, as tangent distance originated from
the field of artificial neural nets, many authors such as SCHWENK use it
in this context [25, 27]. An interesting review of methods for invariant
pattern recognition is given in [29]. The virtual test sample method
derived in Section 5 was motivated by KITTLER’s research on classifier
combination schemes [17]. Finally, the image distortion model used in
our experiments is similar to distance measures such as the Hausdorff
distance or local pertubation models. Yet, the proposed combination
of this distortion model and tangent distance is a new approach.

The remainder of this paper is organized as follows: In Section 2,
an overview of the databases used in the experiments is given. The
GMD based standard approach is presented in Section 3, including
maximum-likelihood parameter estimation, which is done by applying
the Expectation-Maximization algorithm. We furthermore discuss pos-
sibilities to reduce the number of free model parameters that have to
be estimated, which is crucial for successful statistical object recogni-
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Figure 1. Example images taken from the original US Postal Service test set.

tion in many applications (“curse of dimensionality”). In Section 4, we
introduce an affine-invariant distance measure called tangent distance
(proposed by SIMARD in 1993) and its applications within the statistical
classifier described here. Furthermore, we use a simple image distortion
model to extend tangent distance to distorted tangent distance. Before
presenting experimental results in Section 6, we discuss the creation of
virtual data in Section 5. The virtual test sample method derived here
proved to be very effective in our experiments. Finally, we will conclude
the paper in Section 7.

2. Databases used in the experiments

In this section we briefly describe the image databases used in our
experiments.

2.1. THE US POSTAL SERVICE DATABASE

The USPS database (available at ftp://ftp.kyb.tuebingen.mpg.de
/pub/bs/data/) is a well known handwritten digit recognition task,
which contains 7,291 training objects and 2,007 test objects. The digits
are isolated and represented by a 16x16 pixels sized grayscale image
(see Fig. 1). The USPS recognition task is known to be hard (commonly
regarded harder as for instance the similar MNIST handwritten digits
task), with a human error rate of about 2.5% on the test data [26].
An advantage of the USPS task is the availability of many recognition
results reported by international research groups, allowing a fair com-
parison of results (cp. Tab. II). To prove that the proposed methods
generalize well, we also conducted a key experiment on the MNIST
handwritten digits task (60,000 reference and 10,000 test images, avail-
able at http://www.research.att.com/~yann /ocr/mnist).

2.2. THE IRMA DATABASE

The IRMA database consists of 110 abdomen, 706 limbs, 103 breast,
110 skull, 410 chest and 178 spine radiographs, summing up to a total
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Figure 2. Example radiographs taken from the IRMA database, scaled to a common,
square size. Top-left to bottom-right: abdomen, limbs, breast, skull, chest and spine.

of 1,617 images taken from daily routine (after erasing the patient in-
formation). The data is secondary digital, i.e. it has been scanned from
conventional film-based radiographs. All images were scanned using
256 gray levels (with image sizes ranging from about 200x200 pixels to
2000%2000 pixels) and were labelled by an expert. Note that radiograph
classification is a hard problem, as the qualities of radiographs vary con-
siderably and there is a great within-class variance (caused by different
doses of X-rays, varying orientations, pathologies or changing scribor
position). Furthermore, there is a strong visual similarity between many
images of the classes abdomen and spine (cp. Fig. 2). Determining the
anatomic region of a given radiograph is a relevant medical problem,
as this information is not available in secondary digital archives and
in many cases incorrect or missing in primary digital databases. For
detailed information on the motivation and the goals of the IRMA
project, the reader is referred to [18].

2.3. FEATURE ANALYSIS

In our experiments we make use of appearance based pattern recognition,
i.e. we interpret each pixel of an image as a feature. Thus, all the
information contained in an image is used for classification. The only
preprocessing we do for the IRMA database is downscaling the radio-
graphs to 32x32 pixels. Our experiments showed, that this step speeds
up the system significantly without notably increasing the classification
error rate (cp. Section 6). Nevertheless, interpreting each pixel as a
feature results in high-dimensional feature vectors (256-dimensional for
USPS, 1024-dimensional for IRMA). We therefore optionally perform
a linear discriminant analysis to reduce the dimensionality of the fea-
ture space, where the following calculation of the LDA transformation
matrix proved to be more reliable than its straightforward calculation
(the solution of a general eigenvalue problem) [10, pp. 114-123]:
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In a first step, we estimate a whitening transformation matrix W
[12, pp. 26-29]. The transformed data is called white, i.e. the class
conditional covariance matrix

.1 X T
= D (@0 — ) (@0 — i) (1)

n=1

is the matrix of identity. N is the number of training samples, which are
given as labelled pairs (xy,, ky), X, is the observation of training sample
n with according class index k;, and py,_ is the mean vector of class k.
In a second step, we generate K prototype vectors of the form (u; —p),
where K is the number of classes, u,; is the mean vector of class k and
p is the overall mean vector. These vectors are now transformed into an
orthonormal basis. To avoid the numerical instabilities of the classical
Gram-Schmidt approach (caused by rounding errors), this is done by
using a singular value decomposition (SVD) [22, pp. 59-67], yielding a
maximum of (K —1) base vectors. Now, by projecting the original fea-
ture vectors into the subspace spanned, we obtain the reduced feature
vectors. As the maximum number of LDA features is (K —1), we define
so-called pseudoclasses before applying the LDA to the data. These are
created by performing a GMD based cluster analysis on the data (cp.
Section 3). In case of the USPS database, our best LDA results were
obtained creating four pseudoclasses per class, yielding 39-dimensional
feature vectors.

3. The statistical approach

To classify an observation & € IR¢ we use the Bayesian decision rule

zr— r(z) = argmax {p(k) - p(z|k)}, (2)

which is known to be optimal with respect to the expected number of
classification errors in case the required distributions are known [10,
pp. 10-39]. Here, p(k) is the a priori probability of class k, p(x|k) is
the class conditional probability for the observation @ given class k
and r(x) is the decision of the classifier. As neither p(k) nor p(x|k)
are known, we have to choose models for the respective distributions
and estimate their parameters using the training data. In the USPS
experiments, we set p(k) = 7 for each class k (as it is not obvious why
a certain digit should have a higher prior probability than another),
whereas on the IRMA database relative frequencies are used. The class
conditional probabilities, which describe the distribution of the feature
vectors in feature space, are modelled using Gaussian mixture densities
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or kernel densities respectively. As the latter can be regarded as an
extreme case of the mixture density model, where each training sample
is interpreted as the center of a Gaussian normal distribution [3, 10,
pp. 61-62], we concentrate on mixture densities in the following.

3.1. GAUSSIAN MIXTURE DENSITIES

A Gaussian mixture is defined as a linear combination of Gaussian
component densities N (z|py;, Xk;), leading to the following expression
for the class conditional probabilities:

Iy,
p(alk) = 3 cri - A (albsgs S, ®)
i=1
1 1
N (@l Bi) = — e exp | =5 (& — ag) S — )0
(2m) % B

where I, is the number of component densities used to model class k,
ck; are weight coefficients (with c¢x; > 0 and Zfil cki = 1), py; is the
mean vector and Xyg; is the covariance matrix of component density 4
of class k. To avoid the problems of estimating a covariance matrix in
a high-dimensional feature space, i.e. to keep the number of free model
parameters small, globally pooled covariance matrices are used here:

K L N,
3

EZZZN'ZM (5)

k=11i=1

Furthermore, we only use a diagonal covariance matrix, i.e. a vari-
ance vector. Note that this does not lead to a loss of information,
since a GMD of that form can still approximate any density function
with arbitrary precision. Parameter estimation is now done using the
Expectation-Maximization (EM) algorithm [7] in combination with a
Linde-Buzo-Gray based clustering procedure [19].

3.2. PARAMETER ESTIMATION

In this section, we deal with estimating the mixture density parame-
ters. To do so, we use the EM-algorithm, a maximum likelihood pa-
rameter estimation approach for data with so-called hidden variables.
Application of the EM-algorithm to mixture densities is described in
[7], where the index of some density which an observation belongs to
is interpreted as hidden variable. This assignment is expressed as a
probability p(i|@n, k, \k;), where Ag; = (Cri, Byir Zki)- By applying the
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EM-algorithm, we obtain the following re-estimation formulae:

. cri - N(@n| s Zri)
ny Ky Aki) = 6
p(i|x ki) S kit * N(@n|pgi, Zkir) ©

p(’l‘.’l}'n, ka )\kz)

. n = . 7
Vri(n) S plil@ns, ky Aki) "
1
Cri = Fk;p(“wmk’/\ki) ®)
Ny
B = D i(n) @ ©)
n=1

g = z_’i Vei (n) * [@n — B) [0 — Pgs]” (10)

with Nj being the number of training samples of class k. The iteration
is started by estimating the parameters cy;, py; and Xy;, yielding the
initial p(i|@,, k, Ag;). The parameters \i; are now re-estimated by set-
ting ck; 1= Cki, Mp; ‘= Mg and Xy, = 34, yielding a better estimation
for p(i|zn, k, Ak;). This procedure repeateds until the parameters con-
verge. Here, the number of densities to be trained per mixture and
their initial parameters are defined by repeatedly splitting mixture
components, i.e. we use a Linde-Buzo-Gray [19] inspired method. To
overcome the problem of choosing the initial values for the parameters,
a single density is trained for each class first. A mixture density is
then created by splitting single densities, i.e. a mixture component ki
is splitted by modifying the mean vector p,; using a suitable distortion
vector €. In our experiments, fast convergence was obtained by choosing
€ to be a fraction of the respective variance vector, as this method
proved to be very efficient for modelling emission probabilities in speech
recognition [21]. We obtain two new mean vectors py; = pg; + €
and p,; = py; — €, i.e. a mixture density with mixture components
N (x|py;, Bki) and N (x|py;, Xki). The mixture density parameters can
now be re-estimated using Eq. (6)-(10), with the splitting procedure
repeating until the desired number of densities is reached.

3.3. INVARIANCE PROPERTIES OF THE CLASSIFIER

Note that the appearance based statistical approach presented above is
only invariant with respect to image transformations if these variabili-
ties are present in the training data. Therefore, additional invariance of
the classifier is especially useful for small training sets, as they are dealt
with here. In the next sections, we therefore present two possibilities to
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achieve this property, namely (a) the incorporation of invariant distance
measures and (b) the generation of virtual data. In the experiments
conducted, these methods proved to be superior to approaches such as
the extraction of invariant features or image normalization.

4. Incorporation of invariant distance measures

We start this section by dealing with global image transformations,
such as rotations or shifts. A good means to compensate for such
transformations is a distance measure called tangent distance, which
was introduced by SIMARD et al. in 1993 and which proved to be es-
pecially effective for optical character recognition [26]. In the following
considerations, the class index k is dropped for ease of notation.

4.1. OVERVIEW OF TANGENT DISTANCE

In his work, SIMARD observed that reasonably small transformations of
certain objects (like digits) do not affect class membership [26]. Simple
distance measures like the Euclidean distance do not account for this,
instead they are very sensitive to transformations like scaling, transla-
tion, rotation or axis deformations (cp. Fig. 7-10). When an image @ of
size I x J is transformed (e.g. scaled and rotated) with a transformation
t(x, o) which depends on L parameters a € IRY (e.g. the scaling factor
and the rotation angle), the set of all transformed images

Mg = {t(z,a) : a € R'} c R!*/ (11)

is a manifold of at most L dimensions. The distance between two
images can now be defined as the minimum distance between their
according manifolds, being truly invariant with respect to the L trans-
formations regarded. Unfortunately, computation of this distance is a
hard optimization problem and the manifolds needed have no analytic
expression in general. Therefore, small transformations of an image =
are approximated by a tangent subspace Mg to the manifold Mg at
the point . Those transformations can be obtained by adding to «
a linear combination of the vectors Tj(x),! = 1,...,L that span the
tangent subspace. Thus, we obtain as a first-order approximation of
Mg (a visualization of this ‘tangent approximation’ is shown in Fig. 3):

L
Mg ={z+Y o -Ti(z) : @ € RF} ¢ RT¥/ (12)
=1

Now, the single sided tangent distance Dr(x, ) between an image @
and a reference image p is defined as

MIA_Dahmen_FINAL.tex; 4/01/2001; 17:34; p.8



Statistical Image Object Recognition Using Mixture Densities 9

¥

Figure 3. Example images generated via tangent approximation, using the seven
tangents as proposed by Simard. The original image is at top-left.

L
Dr (@, p) = min{||lz + Y _or - Ty(w) — p*}- (13)

=1
The tangent vectors Tj(x) can be computed using simple finite differ-
ences between the original image and a small transformation of it [26].
A double sided tangent distance can also be defined by approximating
Mg and My, and minimizing the distance over all possible combinations
of the respective parameters. In the USPS experiments, we computed
the seven tangent vectors for translations (2), rotation, scaling, axis
deformations (2) and line thickness, as proposed by Simard [26]. In
contrast to this, the line thickness tangent loses its a-priori nature on
the IRMA data and is replaced by a brightness tangent (which is set
to a constant value to compensate for additive brightness variations).
Assuming that the tangent vectors are orthogonal (which can be
achieved using a SVD), Eq. (13) can be solved efficiently by computing

—p)" Ty(x))?

_ a2 - (=
Dr(z,p) = ||z — pll Z 1T ()| 2

=1

(14)

The straightforward incorporation of tangent distance into the Gaus-
sian mixture model is to replace the Mahalanobis distance by tangent
distance in Eq. (4). Another approach is to use tangent approximation
for reliable parameter estimation, which is treated in the following.

4.2. PARAMETER ESTIMATION WITH TANGENT APPROXIMATION

Instead of computing the empirical covariance matrix X of the given
training samples &1, ..., £y, we can use Eq. (12) to implicitly create an
“infinite” amount of training samples ¢, o, 7 = 1,..., N and compute
the respective tangent covariance matriz Xr:

1 N
Br =« [p(0) Y (@na - m@na—w" da, (15

n=1
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L

Tno = Tp+ Z ap - Tl(wn)a (16)
=1

where x, o is a local transformation of the n-th training pattern, N
is the number of training samples with mean g and p(e) is the distri-
bution of the parameters a. With [ p(a) da =1, E(a) = 0 and some
elementary calculations, Eq. (15) reduces to

Sr=3%+ % i T(z,) o T(x,)" (17)

n=1

with = being the empirical covariance matrix of the data, T'(x,) € RP*
the matrix representation of the tangent vectors of training sample x,,
and g € IRY! the covariance matrix of the parameters a (with
Sa = 021 in the experiments). Note that

1 N
pr = [#(0) Y tna da=p. (18)
n=1

Thus, the empirical sample mean does not change in the presence of
tangent vectors. More information on the probabilistic interpretation
of tangent distance can be found in [4, 16].

4.3. THE IMAGE DISTORTION MODEL

Computation of tangent distance as given in Eq. (13) still requires the
calculation of the (squared) Euclidean distance between the optimally
transformed image  and the reference image . Although small global
transformations have been compensated for by the optimal tangent
approximation, this distance is still highly sensitive to local transforma-
tions of the images, e.g. caused by noise (e.g. typical for radiographs).
We therefore use the following image distortion model (IDM): When
calculating the distance between two images  and p we allow for local

Figure 4. 1D comparison of the image distortion model (left) and the tangent
model (right, showing a scale operation): The IDM allows for any locally optimal
transformation, whereas the tangent model imposes global restrictions, leading to a
homogeneous transformation.
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deformations, i.e. we do not compute the squared error between a pixel
(4,7) in @ and its counterpart in g, but look for the ‘best-fitting’ pixel
in p within a certain neighbourhood R;; (see Fig. 4):

Diist (2, 1) = ZZ win {llai; — oyl + CG005.5)} - (19)

11]1

for images with dimension I x J, where C(,7, j,j') is a cost function
that models the costs for deforming a pixel z;; in the input image to
a pixel uyj in the reference image. The region R;; is typically cho-
sen to be square, resulting in a size of (2r 4+ 1) x (2r + 1) pixels for
2D-images, with » = 0 yielding Euclidean distance. As the distortion
distance between almost any two images can be reduced to a value near
zero by increasing r (leading to a significant increase in classification
error), the choice of the cost function is important for large r. In the
experiments, C(i,4’, j, j') is chosen to be a weighted Euclidean distance
between x;; and py . Thus, small local transformations are preferred
to (most probably unwanted) long-range pixel transformations. The
combination of tangent distance and the above image distortion model
is called distorted tangent distance here and can be regarded as per-
forming an image registration step (via optimal tangent approximation)
prior to computing the image distortion distance as given in Eq. (19).

5. Virtual data creation

A typical drawback of statistical classifiers is their need for a large
amount of training data, which is not always available. To overcome
this difficulty, we create virtual training data.

5.1. CREATING VIRTUAL TRAINING DATA

Here, the basic idea is to choose a transformation which respects class
membership and to apply it to the training samples. In the USPS exper-
iments for example, we used +1 pixel shifts to create 9-7,291 = 65,619
training samples of size 18x18 pixels from the original 7,291 USPS
training samples (of size 16x16 pixels). Thus, parameter estimation
as proposed in Section 3 is not only more reliable (as there is more
training data to learn from), but we also incorporate local invariances
with respect to the chosen transformations into the mixture model.

5.2. THE VIRTUAL TEST SAMPLE METHOD

Similar to creating virtual training data, we propose the following vir-
tual test sample method (VTS). Using our a-priori knowledge again, we
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Figure 5. Approximation of the original manifold using shifted data: A 2D example.

create a number of virtual test samples &1, ..., €| 4| by applying transfor-
mations t(x, ), a € A to the given observation. On USPS, we use +1
pixel shifts, i.e. |A| = 9 for virtual data creation; other transformations
such as rotation or scale might be considered in other domains, but did
not improve our results. As an image cannot be shifted into different
directions at the same time, the “events” @1,...,@ 4 can be regarded
as being mutually exclusive. Thus, we can model the class-conditional
probability for the original observation by computing

p(elk) = Y p(x,alk)

OEA
= Y pl) plelak) = o Y plaalk)  (0)
QacA | |aeA

(assuming equal prior probabilities p(a) for all transformations con-
sidered here), where the term 1/|A| does not depend on k and may
be neglected for classification purposes. Note that this motivation for
the sum rule differs from that proposed by KITTLER in [17]. Using
multiple classifiers to classify a single test pattern, it was assumed
that the posterior probabilities computed by the respective classifiers
do not differ much from the prior probabilities in order to justify the
sum rule. In contrast to this, using multiple test patterns and a single
classifier, Eq. (20) simply follows from the fact that the transformations
considered are mutually exclusive.

The key idea behind VTS is that we are able to use classifier com-
bination schemes and their benefits without having to create multiple
classifiers. Instead, we simply create virtual test samples. Thus, clas-
sifying a pattern using VTS has the same computational complexity
as using any other combination scheme, but the (computationally ex-
pensive) training phase remains unaffected. Despite its simplicity, VTS
proved to be very effective in our experiments. Two things should be
noted on VTS and the creation of virtual data in general:

First, creation of virtual data is not uncommon in pattern recogni-
tion. Yet, it is interesting to see that creation of virtual test samples in
combination with the sum rule for combined classification is not only
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Figure 6. Empirical variance vs. tangent variance: Mixture density error rates with
respect to the total number of mixture components used (9-1, no LDA).

effective, but also straightforward to justify (contrary to the multiple
classifier case described in [17]). Second, combination of tangent dis-
tance and the creation of virtual data makes sense, as tangent distance
is not fully invariant to - for instance - image shifts, it is only approx-
imately invariant. Thus, creating virtual data can be interpreted as
yielding a better approximation of the original manifold (cp. Fig. 5).

6. Experimental results

In this section we present some results obtained on the USPS respec-
tively the IRMA database in our experiments.

6.1. EXPERIMENTS ON THE USPS CORPUS

Experiments were started by applying the GMD based standard ap-
proach to the USPS data. Table I shows the achieved results with and
without LDA feature reduction. The notation ‘a-b’ indicates, that we
increased the number of training samples by a factor of a and that of the
test samples by a factor of b. Thus, b=9 indicates that we performed
VTS as proposed in Section 5. To compare the effectiveness of the
VTS method to conventional classifier combination schemes, we used
the ADABOOST algorithm [11] to boost our classifier. Doing so, the 9-1
LDA error rate dropped from 4.5% to 4.2%. Yet, by reducing the error
rate from 4.5% to 3.4%, VTS significantly outperformed ADABOOST
on this particular data set.

The improvements gained from the application of the LDA are
mainly due to the problem of estimating variances in a high-dimensional
feature space, as the next experiment shows, where we used Eq. (17)
to estimate tangent variances in the EM training phase without per-
forming feature reduction. Doing so, the error rate drops significantly
from 6.0% to 4.3%. A comparison of both approaches with respect
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Table I. GMD error rates on USPS with varying variance
estimation and distance measures, with and without LDA.

Method: Error rate [%)
-1 19 91 99

baseline 80 66 64 6.0
baseline + LDA 6.7 59 45 34
baseline + X7 + Mahalanobis 6.4 4.8 4.5 4.3
baseline + ¥7 + tangent 39 36 34 29

to the total number of densities used in the probabilistic model can
be found in Fig. 6. Apparently, computing tangent variances in com-
bination with the explicit creation of virtual training data is a good
means to overcome the difficulties in estimating a covariance matrix in
a high-dimensional feature space.

In another experiment, the Mahalanobis distance used in the Gaus-
sian component densities was replaced by single sided TD in the recog-
nition step (the training phase remained unaffected), further reducing
the error rate from 4.3% to 2.9% (cp. Tab. I). This result could be fur-
ther improved to 2.7% by calculating the double sided tangent distance
in recognition (using a total of about 10,000 mixture components, i.e.
about 1,000 per class). We were not able to obtain a result better than
3.0% error without using tangent variances, but using a bagged kernel
density based classifier further reduced the error rate to 2.2% [2, 15].

A comparison of our USPS results with that reported by other
groups can be found in Tab. II, proving them to be excellent. Note
that results marked with an asterisk were achieved by adding about
2,400 machine printed digits to the training set [9, 26]. We also per-
formed experiments with the proposed image distortion model, Fourier
transform based invariants [6], invariant moments and discriminative
training of Gaussian mixtures [5], yet so far none of these approaches
could improve our best result of 2.2%. Furthermore, using tangent
distance in the training phase yielded no improvement.

6.2. EXPERIMENTS ON THE IRMA CORPUS

As there are only 1,617 radiographs available, a leaving-one-out ap-
proach was adopted here. Thus, each image was classified separately,
using the remaining 1,616 as reference images. As already mentioned in
Section 2, the radiographs were scaled down to a standard size of 32x 32
pixels. This can be done without a significant change in classification
error rate, but leads to a considerable system speedup. Performing a
1-nearest neighbour classifier on the radiographs with a size of 320x 320
pixels gives a classification error of 18.0%, requiring about 30 CPU
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Table II. Error rates [%] reported on USPS and MNIST.

Method USPS MNIST
Human Performance [26] 2.5 0.2
Two-Layer Neural Net [28] 5.9 -
5-Layer Neural Net (LeNetl) [27] 4.2 1.7
Invariant Support Vectors [24] 3.0 0.8
Tangent Distance, 1-NN [26] *2.5 1.1
Boosted Neural Net, [9] *2.6 0.7
This work: GMD, LDA, (VTS) 45 (3.4) -

GMD, VTS, TD 2.7 -

KD, VTS, TD, (bagging) 2.2 1.0 ()

seconds on a 500MHz Digital ALPHA CPU to classify a single image.
Downscaling the images to the proposed size, an error rate of 18.1%
was obtained, requiring about 0.4 CPU seconds per image.

We now used the single-sided tangent distance for radiograph clas-
sification. As can be seen in Tab. III, this reduces the kernel density
error rate from 16.4% to 14.8% (due to the high-dimensional data,
we only used class-specific standard deviations here). We then started
experiments with the IDM, using C(i,%',7,7') = 0. Surprisingly, with
an error rate of 14.7% the result of this simple distortion model is even
slightly better than that obtained by using tangent distance. Comput-
ing distorted tangent distance further reduced the error rate to 12.5%
(using r = 0.7 for the IDM), proving that the effects of the IDM and
TD are additive (this could have be expected, as TD compensates for
global and the IDM for local transformations).

In another experiment, the maximum local distance between two
image pixels was restricted by a threshold d,,,,. Note that the maxi-
mum contribution of a pixel to any of the proposed distance measures is
255 - 255=65,025, as the radiographs are 256-grayscale images. Thus,
a few distorted pixels (as caused by noise or changing scribor posi-
tion) can cause a misclassification. By restricting this contribution to
a maximum value dp,, (called thresholding in the following), i.e. by
replacing

@5 — pirge||* — min{HiEij - Ni’j’“?admaw} (21)

in Eq. (19) we can compensate for this effect, reducing the error rate
to 10.3% using d,q, =3500. Analysing the remaining errors we found
out that many misclassifications could be easily avoided by taking into
consideration the original image aspect ratios (by downscaling the im-
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Table III. Leaving-one-out IRMA error rates
[%] with respect to varying distance measures
(with and without thresholding).

Distance Measure Thresholding
(in kernel density) no yes
Mahalanobis Distance 16.4 14.2
Tangent Distance 14.8 12.9
Image Distortion Model 14.7 13.2

Distorted Tangent Distance 12.5 10.3

ages to a standard size this information is lost). To compensate for this,
an aspect ratio penalty term was introduced, based on the difference
in aspect ratio between the given image and the reference image. This
penalty further reduced the classification error from 10.3% to 8.6%. We
then chose C(i,,7,5") to be a weighted Euclidean distance between
pixels (see Section 4), obtaining an error rate of 8.2%.

In a final experiment, the different distance measures discussed above
were analysed with respect to their invariance properties, given a trans-
formation £. In our experiments, we chose t to be a translation and
calculated the distance between a shifted version of a radiograph and
the original image as well as the distance to radiographs from competing
classes. As can be seen in Fig. 7, Euclidean distance is highly sensitive
to image translations. On the other hand, tangent distance (see Fig. 8)
can nearly compensate one pixel shifts and yields small distances up to
2-3 pixels shifts. Naturally, the IDM with » = 1 (as shown in Fig. 9)
can fully compensate one pixel shifts, yet with r increasing, the dis-
tances to competing classes get smaller rapidly (see Fig. 10). Thus,
large neighbourhoods may lead to bad classification results.

6.3. GENERALIZATION & COMPUTATIONAL COMPLEXITY

Finally, to investigate the generalization properties of the methods pre-
sented, experiments were conducted on two completely new datasets.
The best non-bagged USPS classifier was applied to the MNIST task
(without doing any MNIST specific parameter optimization), whereas
for the TRMA task a new dataset of 332 radiographs was collected from
daily routine and then classified using the original 1,617 IRMA images
as references and the parameters determined on the original IRMA
data. The obtained results of 1.0% for MNIST (cp. Tab. II) and 9.0%
for the new radiograph data show that the proposed methods generalize
well.
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Figure 7. Behaviour of Euclidean distance with respect to image shifts.
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Figure 8. Behaviour of tangent distance with respect to image shifts.

Naturally, the computational complexity of the proposed method
increases with the number of densities (i.e. Ij) increasing, with ker-
nel densities being most expensive. Nevertheless, our experiments did
not aim at minimizing the computational complexity, instead recogni-
tion accuracy was the most important goal. Computing single-sided/
double-sided tangent distance in a kernel density setting takes about
one respectively ten seconds per image (on USPS as well as on IRMA,
as the radiographs are bigger, but there are fewer reference images) on
a Digital ALPHA 500 MHz CPU. Furthermore, algorithms to reduce
the number of references without loosing too much classification per-
formance are known, among them editing and condensing techniques

[8].
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7. Conclusion

In this paper, we presented an invariant, mixture density based ap-
proach to statistical image object recognition. The effectiveness of our
method was shown by applying it to the well known US Postal Service
handwritten digits recognition task, as well as to a completely different
task, consisting of 1,617 medical radiographs. The obtained USPS error
rate of 2.2% (using the original USPS training and test sets) is the best
result published so far on this particular dataset. Given the difficulty
of the task, the obtained error rate of 8.2% on the IRMA database of
scanned radiographs is a very good result, too, proving the wide variety
of possible applications of the proposed approach. On the USPS data,
estimation of the proposed tangent covariance matrix proved to be
especially effective, as well as using the proposed virtual test sample
method. On the IRMA data it could be shown, that the image dis-
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tortion model significantly reduced the tangent distance error rate by
computing distorted tangent distance. As neither of the datasets used
in the experiments features a development test set, the generalization
abilities of the proposed methods were shown by applying the best US
Postal respectively IRMA system to two completely new datasets.

Future work includes the application of the proposed algorithms in

a statistical image retrieval system, where the objects detected in an
image will be used as image indices. First steps towards such a system
are presented in [1].
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