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Abstract

In this paper we present a new approach to variance mod-
elling in automatic speech recognition (ASR) that is based o
tangent distanc€TD). Using TD, classifiers can be made in-
variant w.r.t. small transformations of the data. Suchdran
formations generate a manifold in a high dimensional featur
space when applied to an observation vector. While conven-
tional classifiers determine the distance between an cétsenv
and a prototype vector, TD approximates the minimum digtanc
between their manifolds, resulting in classification treain-
variant w.r.t. the underlying transformation. Recenthjstap-
proach was successfully applied in image object recognitio
this paper we describe how TD can be incorporated into ASR
systems based on Gaussian mixture densities (GMD). The pro-
posed method is embedded into a probabilistic framework. Ex
periments performed on thsieTill corpus for telephone line
recorded German digit strings show a significant improvemen
in comparison with a conventional GMD approach using a com-
parable amount of model parameters.

1. Introduction

The design of a classifier that is invariant w.r.t. certa@émsfor-
mations is an important aspect in pattern recognition. Mgy
proaches to invariant pattern recognition are known [1jpagn
them an invariant distance measure catltgent distanceTD
was proposed in [2, 3] and proved to be very effective in the do
main of optical character recognition. Distance measukes |
the Euclidean distance and related ones are very senditive t
small transformations, even though these transformatiomst
affect class membership. In contrast to that, TD is able te pa
tially compensate the effect of such transformations. Tie a
proach has been successfully applied in different imageabbj
recognition tasks [4]. In this paper we demonstrate, how &b ¢
successfully be incorporated into ASR systems that arelu@ase
Gaussian mixture densities. For this, TD is embedded inta-a s
tistical framework. In section 2 we motivate TD on the bagdis o
a comparison with the Euclidean distance. Section 2.1 ptese
a probabilistic interpretation of TD and describes the et
the Mahalanobis distance. Section 3 deals with the incarpor
tion of TD into ASR systems based on GMDs. A discussion
of the experimental results obtained on ®ieTill corpus for
continuous digit strings concludes the paper.

2. Overview of tangent distance

Letz € IRP be a pattern and(z, o) denote a transformation
that depends on a paramefetuplea € IR". Then the set of
points of all transformations of the pattetris a manifold M,
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Figure 1:lllustration of the Euclidean distance between an ob-
servationz and a reference vectqi (dashed line) in compari-
son with the minimal distance between the corresponding-man
folds (dotted line). The tangent approximation is depidtgthe
light gray lines.

of at most dimensiotL, in pattern space:
»={f(z,a) : « € R*} C R" 1)

Considerf with the property that (small) transformations of
the pattern do not affect class membership. If the disciamin
function for a class: is based on e.g. the Euclidean distance,
d(z,c) andd(f(z,a),c) may no longer be equal for certain
which could lead to misclassification. In contrast to thales
sifier would be invariant w.r.tf, if the discriminant function
was based on the minimum distance between the mankoéld

of a pattern: and the manifold\1,, of a class specific prototype
vectory (cf. Figure 1):

dManifOId(iaﬂ) = min {Hf(?ﬁ:a)—f(lhﬁ)HZ}

a,BERL

)

However, distance calculation between manifolds is a hand n
linear optimization problem. Moreover, a manifold does not
have a closed expression in general, so it cannot be hardled i
an analytical way. To overcome these problems the manifolds
can be approximated bytangent subspacﬁ//i\. Thetangent
vectorsz; that span the tangent subspace are defined as the par-
tial derivatives of a transformatiofi w.r.t. to its parameters;
(t=1,...,L):

21 = 0f(z,a) /Dy ©)

Using this definition the transformatiof{x, «) can be appro-
ximated as a Taylor expansion aroumd= 0:

flz,0) =2+ 3, i + O(af) (4)

The set of points consisting of all linear combinations d th
patternz with the tangent vectors; forms the tangent subspace



M., which is a first-order approximation @1,
®)

The definition of M, has the advantage that it is a linear ap-
proximation of the manifold\, and thus easy to use in dis-
tance calculations. A drawback is that the distance measure
is no longer globally invariant w.r.tf, but only locally invari-

ant. On the other hand global invariance may not be necessary
since sometimes, large transformations of a pattern doeiot r
spect class membership. Using the squared Euclidean norm TD
is then defined as:

dos(, p) = rgfgl{“(ﬂ? + 3 um) — (n+ X, Bm)|)*} (6)

M\zZ{x+Zla1x1 ta€R"} C R

Eq. (6) is also known asvo-sidedtangent distance (2S) [5]. In
order to reduce the effort for determinimlgs(z, ) it is con-
venient to restrict the calculation of the tangent subspdoe
prototype vectors. The resulting distance measure iscbatie-
sidedtangent distance (1S).

dis(e.p) = min{|le = (u+ S, ) P} (7)

Even though the new distance measure has been introduced us-

ing the Euclidean distance, the same applies as well for tiee M
halanobis distance, as will be shown in the next section.

2.1. A probabilistic framework for tangent distance

For the purpose of embedding TD into a statistical framework
we will focus on the consideration of one-sided TD, assuming
that only the references are subject to variations. A dstail
overview including the two-sided TD can be found in [6].

For the moment we assume that the tangent vegtprare
known. The observations shall be normal distributed with
expectationu and covariance matriX. In order to simplify the
notation, class indices are omitted. Using the first-org@re:
ximation of the manifoldM,, for a mean vector: one obtains
the probability density function (pdf) for the observasan

p($|u:a12):N($|u+Elalﬂl:Z) (8)

The integral of the joint distributiop(z, « | 1, £) over the un-
known transformation parametessleads to the following dis-
tribution:

p(m‘/.l,,z):/p(m,a‘p,,z) da

=/p<a|u,z>~p<x|u,a,z>da ©)

[#@) b |m0.5) da

Note that we assume is independent ofx and X. Thus,
p(a|p, L) = p(a) applies. They, are assumed to be normal
distributed with meai and a covariance matrile, i.e.

p(a) :N(a‘oz')/?]): (10)

whereT denotes the identity matrix angf is an empirical pa-
rameter. W.l.0.g., the tangent vectors of the pdf in Eq. &é)loe
assumed as stochastically independent since they formis bas
of the tangent subspace. Hence, it is always possible ta-deco
relate the tangent vectors using e.g. a singular value degom
sition. The evaluation of the integral in Eqg. (9) leads to the
following expression [6]:

L
palp D) = [S++°3 mul| 2

=1

exp { - 3[le - (=7 -

)@= )] } (11)

Note that the exponent in Eq. (11) leads to conventional
Mahalanobis distance foy — 0 and TD fory — .
Thus, the incorporation of tangent vectors adds a correc-
tive term to the Mahalanobis distance that only affects the
covariance matrix which can be interpreted as structuiig).

L — —
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3. Incorporating TD into ASR

In the last section the assumption was made that the transfor
mations for which invariance is desired are known. However,
in contrast to most image object recognition tasks, thestoan
mations to be selected are not obvious in ASR and often there
is no prior knowledge available. In order to circumvent this
difficulty, the tangent vectors can be learned from the ingin
data. As there is class specific variation in the data, weimbta
a suitable approximation of the tangent vectors by estimgati
the class specific variance and determining its derivatifé®
estimation of the tangent vectors can be formulated within a
maximum likelihood approach.

For this let the training data be given by= 1,... , N train-
ing utterances, each consisting of a sequence of acoustic ob
servation vectors,, i, xn,2,... ,&n,1,. The HMM state to
which an acoustic observation is aligned to during the tngin
phase shall be denoted witkn, t). 9 shall comprise all distri-
bution parameters, i.e. class specific means, variances,nai
weights, and tangent vectors. In the following the clasgcisl
will be identified with HMM states. Assuming that the number
L of tangent vectors is known (note thatcan be determined
automatically [8]) the objective function that has to be max
mized over all training samples is given by:

N T,

Fyp=3 3 % dostnnlogp(@ns | ps, %) < max (12)

s n=1t=1

Here, § denotes the Kronecker delta. W.l.0.g. we can assume
that the vector$x /)T . 14, are orthonormalized, i.e.:

P S psm = p ST AT o = Gim, (13)
whereX~'/? is defined asA - Q~'/% with A := [v1,... ,vp]
andQ) := diag(w1, . .. ,wp), wherev, is the eigenvector of the
eigenvalue problenk - vy = wy - vg ford = 1,... , D. Now,

the normalization term in Eq. (11) is a constantsiand thus,
Eq. (12) leads to the following expression (constant teraveh
been dropped):

N Tn

5SS ety [~ ) - ) -
s n=1t=1
>

=1

[(ﬁn,t - HS)TZ_IHSI]2
1/7° + 37

] L min  (14)

For a fixed state this is equivalent to the maximization of
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(15)

with

Vs = ]-/Ns . Zn Zt 6s,s(n,t)(mn,t - /Js)(mn,t - /Js)T

as the state specific empirical covariance matfi% @denotes
the number of training vectors that are aligned to the stpate

¥ andV; can be regarded as covariance matrices of two com-
peting models. Their concrete form is discussed in sectibn 3
Taking the constraints of orthonormality of the tangenttoes
w.r.t. 2~ 1/2 into account, the objective function is modified us-
ing state specific Lagrange multipliexs;, :

fﬁ({)\slm}) =Fy _ZZ Z }\slm .

s =1 m=1
(WES 2= e — Gim) (16)

The derivation of Eq. (16) w.r.tis = (27'/*)7 . uy and
equating the result to zero yields [9]:

0Fs)0fia =0 <= ViS 'pg = Au(1/9* + 1)

Thus, the maximization afFy is equivalent to the solution of
a generalized symmetric eigenvalue problem, where theneige
values correspond with the Lagrange multipliers;. The
state specific tangent vectqis; maximizing Eq. (15) are those
eigenvectors with the largest corresponding eigenvalues.

3.1. Modelsfor the covariance matrices

As mentioned in the previous section two different modelsha
to be determined for the covariance matrieggandV;. While

Vs is defined as a state specific covariance matrix, a globally
pooled covariance matrix proved to be a suitable choic&for
Using these models the effect of incorporating TD into Maha-
lanobis distance is equivalent to performing a global wtiitg
transformation of feature space and then employing/tis¢éate
specific eigenvectors with the largest eigenvalues. Tliisiel
nates those directions of class specific variation thatectus
greatest reconstruction error towartls Because of this, TD
has the advantage that it also works very well in combination
with globally operating feature transformations as fotanse

a linear discriminant analysis (LDA), sinégcan obviously be
assumed as a global covariance matrix of an LDA transformed
feature space.

3.2. Adjusting~?

Preliminary experiments on TD have shown that the covaeianc
matrix in Eg. (11) tends to become singular, especially ifeno
than one tangent vector is used. In order to compensatefthis e
fect,~ is adjusted mixture specifically in the following way. For
a state index ~,; is chosen as theth eigenvalue),;; scaled

by a mixture specific facton, which ensures that the result-
ing matrix is positive definite. For the experiments destim
section 4 eachy, was initially chosen as a power ®f Thenn,

was as often halved until the resulting covariance matri m@
longer singular.

4. Experimental results

Experiments were performed on tB&Till corpus [10] for tele-
phone line recorded German continuous digit strings. The co
pus consists of approximately 43k spoken digits in 13k sen-
tences for both training and test set. In Table 1 some infor-
mation on corpus statistics is summarized.

Table 1:Corpus statistics for the SieTill corpus.

corpus female male
sent. | digits | sent. | digits
test | 6176 | 20205 | 6938 | 22881
train | 6113 | 20115 | 6835 | 22463

The recognition system is based on whole word HMMs using
continuous emission densities. The baseline system iactear
rized as follows:

e vocabulary of 11 German digits includingwa,

e gender-dependent whole-word HMMs, with every two
subsequent states being identical,

e for each gender 214 distinct states plus one for silence
e Gaussian mixture emission distributions,
e one globally pooled diagonal covariance matffix

e 12 cepstral features plus first derivatives and the second
derivative of the first feature component.

The baseline recognizer applies ML training using the Yiter
approximation in combination with an optional LDA. A detdl
description of the baseline system can be found in [11]. The
word error rates obtained with the baseline system for tine-co
bined recognition of both genders are summarized in Table 2 (
tangent vectors (tv) per mixture (mix)). Th& were trained as
state specific full covariance matrices. Note thatlthare only
necessary in the training phase.

For single densities the incorporation of TD improved thedvo
error rate byl8.1% relative for one tangent vector ad.6%
relative using four tangent vectors per state. In combinati
with LDA transformed features the relative improvement was
13.8% for the incorporation of one tangent vector and increased

Table 2:Word error rates (WER) on the SieTill corpus obtained
with tangent distance. In column 'tv/mix’ the number of used
tangent vectors per mixture is given. A valuedaheans that
the conventional Mahalanobis distance is used. 'dns/niseg
the average number of densities per mixture.

LDA | dns/mix | tv/mix error rateg%)
del-ins | WER | SER
no 1 0 1.17-0.83| 4.59 11.34
1 1.17-0.52| 3.76 9.22
4 0.69-1.07| 3.60 9.10
16 0 0.59-0.83| 2.67 6.92
1 0.54-0.58| 2.49 6.56
4 0.46-0.80| 2.60 6.76
128 0 0.52-0.54| 2.24 5.87
1 0.50-0.48| 2.12 5.75
4 0.55-0.49| 2.13 571
yes 1 0 0.71-0.63| 3.78 9.74
1 0.97-0.49| 3.26 8.46
5 0.48-0.88 | 2.70 7.18
16 0 0.44-0.68| 2.28 5.92
1 0.58-0.40| 1.97 5.06
4 0.38-0.55| 1.97 5.35
128 0 0.45-0.39| 1.85 4.94
1 0.42-0.34 | 1.67 4.50
4 0.39-0.41| 1.76 481
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Figure 2: Evolution of word error rates on the SieTill test cor-
pus for single densities using ML training on LDA transfodme
features for different numbers of tangent vectors.

to 28.6% for five tangent vectors per state. Figure 2 depicts the
evolution of the word error rates on ti&eTill test corpus for
different numbers of tangent vectors using single derssttiat
were trained on LDA transformed features. For this settigg t
optimal choice for gender dependent trained referencediveas
tangent vectors per state.

Using mixture densities the performance gain in word erate r
decreased but was still significant. Thus the relative im@ro
ment between the baseline result and TD Wa¥% (16 den-
sities plus one tangent vector per mixture) for untransémm
features and3.6% for LDA transformed features (16 dns/mix,

1 tv/mix). The same applies for the optimal number of tan-
gent vectors which was found at one tangent vector per mix-
ture. Consequently, a larger number of densities is ablarto p
tially compensate for the error that is made in the case Heat t
covariance matrix is estimated using the conventional otkth
The best result was obtained using 128 densities per mikiure
combination with LDA transformed features and the incogpor
tion of one tangent vector per state. Using this setting thelw
error rate decreased froin85% to 1.67% which is a relative
improvement o6%. Figure 3 depicts the evolution of word er-
ror rates for conventional training in comparison with TDngs
equal numbers of parameters. Even though the incorporation
of tangent vectors into the Mahalanobis distance incretees
number of parameters that are necessary to modify the glob-
ally pooled variance the overall gain in performance jussifi
the higher expense.

5. Conclusion

In this paper we presented a new approach for modelling vari-
ances in automatic speech recognition based on tangesmciést
(TD). For that purpose TD was embedded into a probabilis-
tic framework. In accordance with the theory, the new model
proved to be very effective in combination with globally ope
ting feature transformations as the linear discriminaatysis.
Comparative experiments were performed onSreTill corpus

for continuous German digit strings. Using one-sided Tla r
ative improvement in word error rate of approximat2iys was
achieved for single densities. For mixture densities wdctou
gain a relative improvement of up 8.6% in word error rate.
Incorporating TD we were able to reduce the word error rate of
our best recognition result based on ML trained refererraes f
1.85% t01.67%.
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Figure 3: Comparison of WER for mixture densities on the
SieTill test corpus using equal overall parameter numbers.
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