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Abstract

In this paper we present a new approach to variance mod-
elling in automatic speech recognition (ASR) that is based on
tangent distance(TD). Using TD, classifiers can be made in-
variant w.r.t. small transformations of the data. Such trans-
formations generate a manifold in a high dimensional feature
space when applied to an observation vector. While conven-
tional classifiers determine the distance between an observation
and a prototype vector, TD approximates the minimum distance
between their manifolds, resulting in classification that is in-
variant w.r.t. the underlying transformation. Recently, this ap-
proach was successfully applied in image object recognition. In
this paper we describe how TD can be incorporated into ASR
systems based on Gaussian mixture densities (GMD). The pro-
posed method is embedded into a probabilistic framework. Ex-
periments performed on theSieTill corpus for telephone line
recorded German digit strings show a significant improvement
in comparison with a conventional GMD approach using a com-
parable amount of model parameters.

1. Introduction
The design of a classifier that is invariant w.r.t. certain transfor-
mations is an important aspect in pattern recognition. Manyap-
proaches to invariant pattern recognition are known [1], among
them an invariant distance measure calledtangent distance. TD
was proposed in [2, 3] and proved to be very effective in the do-
main of optical character recognition. Distance measures like
the Euclidean distance and related ones are very sensitive to
small transformations, even though these transformationsdo not
affect class membership. In contrast to that, TD is able to par-
tially compensate the effect of such transformations. The ap-
proach has been successfully applied in different image object
recognition tasks [4]. In this paper we demonstrate, how TD can
successfully be incorporated into ASR systems that are based on
Gaussian mixture densities. For this, TD is embedded into a sta-
tistical framework. In section 2 we motivate TD on the basis of
a comparison with the Euclidean distance. Section 2.1 presents
a probabilistic interpretation of TD and describes the effect on
the Mahalanobis distance. Section 3 deals with the incorpora-
tion of TD into ASR systems based on GMDs. A discussion
of the experimental results obtained on theSieTill corpus for
continuous digit strings concludes the paper.

2. Overview of tangent distance
Let x 2 IRD be a pattern andf(x; �) denote a transformation
that depends on a parameterL-tuple� 2 IRL. Then the set of
points of all transformations of the patternx is a manifoldMx
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Figure 1:Illustration of the Euclidean distance between an ob-
servationx and a reference vector� (dashed line) in compari-
son with the minimal distance between the corresponding mani-
folds (dotted line). The tangent approximation is depictedby the
light gray lines.

of at most dimensionL in pattern space:Mx = �f(x; �) : � 2 IRL	 � IRD (1)

Considerf with the property that (small) transformations of
the pattern do not affect class membership. If the discriminant
function for a class
 is based on e.g. the Euclidean distance,d(x; 
) andd(f(x;�); 
) may no longer be equal for certain�
which could lead to misclassification. In contrast to that a clas-
sifier would be invariant w.r.t.f , if the discriminant function
was based on the minimum distance between the manifoldMx
of a patternx and the manifoldM� of a class specific prototype
vector� (cf. Figure 1):dManifold(x; �) = min�;�2IRL�jjf(x; �)� f(�; �)jj2	 (2)

However, distance calculation between manifolds is a hard non-
linear optimization problem. Moreover, a manifold does not
have a closed expression in general, so it cannot be handled in
an analytical way. To overcome these problems the manifolds
can be approximated by atangent subspace
M. The tangent
vectorsxl that span the tangent subspace are defined as the par-
tial derivatives of a transformationf w.r.t. to its parameters�l
(l = 1; : : : ; L): xl = �f(x; �)=��l (3)

Using this definition the transformationf(x; �) can be appro-
ximated as a Taylor expansion around� = 0:f(x; �) = x+Pl �lxl +O(�2l ) (4)

The set of points consisting of all linear combinations of the
patternxwith the tangent vectorsxl forms the tangent subspace




Mx, which is a first-order approximation ofMx:
Mx = �x+Pl �lxl : � 2 IRL	 � IRD (5)

The definition of
Mx has the advantage that it is a linear ap-
proximation of the manifoldMx and thus easy to use in dis-
tance calculations. A drawback is that the distance measure
is no longer globally invariant w.r.t.f , but only locally invari-
ant. On the other hand global invariance may not be necessary
since sometimes, large transformations of a pattern do not re-
spect class membership. Using the squared Euclidean norm TD
is then defined as:d2S(x; �) = min�;� �jj(x+Pl �lxl)� (�+Pl �l�l)jj2	 (6)

Eq. (6) is also known astwo-sidedtangent distance (2S) [5]. In
order to reduce the effort for determiningd2S(x; �) it is con-
venient to restrict the calculation of the tangent subspaces to
prototype vectors. The resulting distance measure is called one-
sidedtangent distance (1S).d1S(x; �) = min� �jjx� (�+Pl �l�l)jj2	 (7)

Even though the new distance measure has been introduced us-
ing the Euclidean distance, the same applies as well for the Ma-
halanobis distance, as will be shown in the next section.

2.1. A probabilistic framework for tangent distance

For the purpose of embedding TD into a statistical framework
we will focus on the consideration of one-sided TD, assuming
that only the references are subject to variations. A detailed
overview including the two-sided TD can be found in [6].

For the moment we assume that the tangent vectors�l are
known. The observationsx shall be normal distributed with
expectation� and covariance matrix�. In order to simplify the
notation, class indices are omitted. Using the first-order appro-
ximation of the manifoldM� for a mean vector� one obtains
the probability density function (pdf) for the observationsx:p(x j�; �;�) = N (x j�+Pl �l�l; �) (8)

The integral of the joint distributionp(x;� j�;�) over the un-
known transformation parameters� leads to the following dis-
tribution:p(x j�;�) = Z p(x;� j�;�) d�= Z p(� j�;�) � p(x j�; �;�) d�= Z p(�) � p(x j�; �;�) d� (9)

Note that we assume� is independent of� and �. Thus,p(� j �;�) � p(�) applies. The�l are assumed to be normal
distributed with mean0 and a covariance matrix
2I, i.e.p(�) = N (� j 0; 
2I); (10)

whereI denotes the identity matrix and
2 is an empirical pa-
rameter. W.l.o.g., the tangent vectors of the pdf in Eq. (8) can be
assumed as stochastically independent since they form a basis
of the tangent subspace. Hence, it is always possible to decor-
relate the tangent vectors using e.g. a singular value decompo-
sition. The evaluation of the integral in Eq. (9) leads to the
following expression [6]:

p(x j�;�) = ���+ 
2 LXl=1 �l�Tl ��� 12 �exp�� 12h(x� �)T���1 �LXl=1 [�Tl ��1℄T [�Tl ��1℄1=
2 + �Tl ��1�l �(x� �)i� (11)

Note that the exponent in Eq. (11) leads to conventional
Mahalanobis distance for
 ! 0 and TD for 
 ! 1.
Thus, the incorporation of tangent vectors adds a correc-
tive term to the Mahalanobis distance that only affects the
covariance matrix which can be interpreted as structuring� [7].

3. Incorporating TD into ASR
In the last section the assumption was made that the transfor-
mations for which invariance is desired are known. However,
in contrast to most image object recognition tasks, the transfor-
mations to be selected are not obvious in ASR and often there
is no prior knowledge available. In order to circumvent this
difficulty, the tangent vectors can be learned from the training
data. As there is class specific variation in the data, we obtain
a suitable approximation of the tangent vectors by estimating
the class specific variance and determining its derivatives. The
estimation of the tangent vectors can be formulated within a
maximum likelihood approach.

For this let the training data be given byn = 1; : : : ; N train-
ing utterances, each consisting of a sequence of acoustic ob-
servation vectorsxn;1; xn;2; : : : ; xn;Tn . The HMM state to
which an acoustic observation is aligned to during the training
phase shall be denoted withs(n; t). # shall comprise all distri-
bution parameters, i.e. class specific means, variances, mixture
weights, and tangent vectors. In the following the class indices
will be identified with HMM states. Assuming that the numberL of tangent vectors is known (note thatL can be determined
automatically [8]) the objective function that has to be maxi-
mized over all training samples is given by:F# =Xs NXn=1 TnXt=1 Æs;s(n;t) log p(xn;t j�s;�) != max (12)

Here,Æ denotes the Kronecker delta. W.l.o.g. we can assume
that the vectors(��1=2)T � �sl are orthonormalized, i.e.:�Tsl��1�sm = �Tsl��1=2(��1=2)T�sm = Ælm; (13)

where��1=2 is defined asA � 
�1=2 with A := [v1; : : : ; vD℄
and
 := diag(!1; : : : ; !D), wherevd is the eigenvector of the
eigenvalue problem� � vd = !d � vd for d = 1; : : : ; D. Now,
the normalization term in Eq. (11) is a constant ins and thus,
Eq. (12) leads to the following expression (constant terms have
been dropped):Xs NXn=1 TnXt=1 Æs;s(n;t) � h(xn;t � �s)T��1(xn;t � �s)�LXl=1 [(xn;t � �s)T��1�sl℄21=
2 + �Tsl��1�sl i != min (14)

For a fixed states this is equivalent to the maximization of



LXl=1 �Tsl(��1)TVs ��1�sl1=
2 + �Tsl��1�sl != max (15)

withVs = 1=Ns �PnPt Æs;s(n;t)(xn;t � �s)(xn;t � �s)T
as the state specific empirical covariance matrix (Ns denotes
the number of training vectors that are aligned to the states).� andVs can be regarded as covariance matrices of two com-
peting models. Their concrete form is discussed in section 3.1.
Taking the constraints of orthonormality of the tangent vectors
w.r.t.��1=2 into account, the objective function is modified us-
ing state specific Lagrange multipliers�slm:F#(f�slmg) = F# �Xs LXl=1 LXm=1 �slm ���Tsl��1=2(��1=2)T�sm � Ælm� (16)

The derivation of Eq. (16) w.r.t.b�sl := (��1=2)T � �sl and
equating the result to zero yields [9]:�F#=�b�sl != 0 () Vs ��1�sl = �sll(1=
2 + 1)�sl
Thus, the maximization ofF# is equivalent to the solution of
a generalized symmetric eigenvalue problem, where the eigen-
values correspond with the Lagrange multipliers�sll. The
state specific tangent vectors�sl maximizing Eq. (15) are those
eigenvectors with the largest corresponding eigenvalues.

3.1. Models for the covariance matrices

As mentioned in the previous section two different models have
to be determined for the covariance matrices� andVs. WhileVs is defined as a state specific covariance matrix, a globally
pooled covariance matrix proved to be a suitable choice for�.
Using these models the effect of incorporating TD into Maha-
lanobis distance is equivalent to performing a global whitening
transformation of feature space and then employing theL state
specific eigenvectors with the largest eigenvalues. This elimi-
nates those directions of class specific variation that cause the
greatest reconstruction error towards�. Because of this, TD
has the advantage that it also works very well in combination
with globally operating feature transformations as for instance
a linear discriminant analysis (LDA), since� can obviously be
assumed as a global covariance matrix of an LDA transformed
feature space.

3.2. Adjusting 
2
Preliminary experiments on TD have shown that the covariance
matrix in Eq. (11) tends to become singular, especially if more
than one tangent vector is used. In order to compensate this ef-
fect,
 is adjusted mixture specifically in the following way. For
a state indexs 
sl is chosen as thel-th eigenvalue�sll scaled
by a mixture specific factor�s which ensures that the result-
ing matrix is positive definite. For the experiments described in
section 4 each�s was initially chosen as a power of2. Then�s
was as often halved until the resulting covariance matrix was no
longer singular.

4. Experimental results
Experiments were performed on theSieTillcorpus [10] for tele-
phone line recorded German continuous digit strings. The cor-
pus consists of approximately 43k spoken digits in 13k sen-
tences for both training and test set. In Table 1 some infor-
mation on corpus statistics is summarized.

Table 1:Corpus statistics for the SieTill corpus.

corpus female male
sent. digits sent. digits

test 6176 20205 6938 22881
train 6113 20115 6835 22463

The recognition system is based on whole word HMMs using
continuous emission densities. The baseline system is characte-
rized as follows:� vocabulary of 11 German digits including ’zwo’,� gender-dependent whole-word HMMs, with every two

subsequent states being identical,� for each gender 214 distinct states plus one for silence� Gaussian mixture emission distributions,� one globally pooled diagonal covariance matrix�,� 12 cepstral features plus first derivatives and the second
derivative of the first feature component.

The baseline recognizer applies ML training using the Viterbi
approximation in combination with an optional LDA. A detailed
description of the baseline system can be found in [11]. The
word error rates obtained with the baseline system for the com-
bined recognition of both genders are summarized in Table 2 (0
tangent vectors (tv) per mixture (mix)). TheVs were trained as
state specific full covariance matrices. Note that theVs are only
necessary in the training phase.
For single densities the incorporation of TD improved the word
error rate by18:1% relative for one tangent vector and21:6%
relative using four tangent vectors per state. In combination
with LDA transformed features the relative improvement was13:8% for the incorporation of one tangent vector and increased

Table 2:Word error rates (WER) on the SieTill corpus obtained
with tangent distance. In column ’tv/mix’ the number of used
tangent vectors per mixture is given. A value of0 means that
the conventional Mahalanobis distance is used. ’dns/mix’ gives
the average number of densities per mixture.

LDA dns/mix tv/mix error rates[%℄
del - ins WER SER

no 1 0 1.17-0.83 4.59 11.34
1 1.17-0.52 3.76 9.22
4 0.69-1.07 3.60 9.10

16 0 0.59-0.83 2.67 6.92
1 0.54-0.58 2.49 6.56
4 0.46-0.80 2.60 6.76

128 0 0.52-0.54 2.24 5.87
1 0.50-0.48 2.12 5.75
4 0.55-0.49 2.13 5.71

yes 1 0 0.71-0.63 3.78 9.74
1 0.97-0.49 3.26 8.46
5 0.48-0.88 2.70 7.18

16 0 0.44-0.68 2.28 5.92
1 0.58-0.40 1.97 5.06
4 0.38-0.55 1.97 5.35

128 0 0.45-0.39 1.85 4.94
1 0.42-0.34 1.67 4.50
4 0.39-0.41 1.76 4.81
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Figure 2:Evolution of word error rates on the SieTill test cor-
pus for single densities using ML training on LDA transformed
features for different numbers of tangent vectors.

to 28:6% for five tangent vectors per state. Figure 2 depicts the
evolution of the word error rates on theSieTill test corpus for
different numbers of tangent vectors using single densities that
were trained on LDA transformed features. For this setting the
optimal choice for gender dependent trained references wasfive
tangent vectors per state.
Using mixture densities the performance gain in word error rate
decreased but was still significant. Thus the relative improve-
ment between the baseline result and TD was6:7% (16 den-
sities plus one tangent vector per mixture) for untransformed
features and13:6% for LDA transformed features (16 dns/mix,
1 tv/mix). The same applies for the optimal number of tan-
gent vectors which was found at one tangent vector per mix-
ture. Consequently, a larger number of densities is able to par-
tially compensate for the error that is made in the case that the
covariance matrix is estimated using the conventional method.
The best result was obtained using 128 densities per mixturein
combination with LDA transformed features and the incorpora-
tion of one tangent vector per state. Using this setting the word
error rate decreased from1:85% to 1:67% which is a relative
improvement of5%. Figure 3 depicts the evolution of word er-
ror rates for conventional training in comparison with TD using
equal numbers of parameters. Even though the incorporation
of tangent vectors into the Mahalanobis distance increasesthe
number of parameters that are necessary to modify the glob-
ally pooled variance the overall gain in performance justifies
the higher expense.

5. Conclusion
In this paper we presented a new approach for modelling vari-
ances in automatic speech recognition based on tangent distance
(TD). For that purpose TD was embedded into a probabilis-
tic framework. In accordance with the theory, the new model
proved to be very effective in combination with globally opera-
ting feature transformations as the linear discriminant analysis.
Comparative experiments were performed on theSieTillcorpus
for continuous German digit strings. Using one-sided TD, a rel-
ative improvement in word error rate of approximately20%was
achieved for single densities. For mixture densities we could
gain a relative improvement of up to13:6% in word error rate.
Incorporating TD we were able to reduce the word error rate of
our best recognition result based on ML trained references from1:85% to 1:67%.
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Figure 3: Comparison of WER for mixture densities on the
SieTill test corpus using equal overall parameter numbers.
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